*

I TR

i

"on

]

HoH

wou oM

i T TR S PN S
o
=1

1]

ar
or
ar H
or
or
or

~ < I S S S
L0 o
-3 -
=z o x

value

= y3lue
= value

Y
Y
Y
Y
Y
Y
J
Y

P e = s i i e S S 4

SYSTEM commarys o ilior:.

Ensoie sazswore checring or nct. e P
’ v P o
Force run-only nmode ar nagt. - e -
A) . . S

Ensble debounce or-not (requ1r=s [PRES

Enable "JKL" ar rot, ')

Enable “123" or not (reguires AE—N).

Enable "DFG" or rot (requires -AB=N).

Enable BREAK key or not (requxres AB=N) .,
\ASCIVQA%

L/C modificztion is installed or not (Hed-I only),

Enable reyboard 1ntercept Leuiine or nnt. '

RESERVED,)

Number of drives attached to sgsten.

Number aof read retries before "errar”.

Default drive-nbr for DIR cownand.

Lowest drive-nbr for-new file. creatzon {if rio d{lve-nbr in filsspec),

Forced value af HIKEHW. (if not zero).

Enable CLEAR key or_not (raquzres Ad=Y) .

Allow full-disk backup or. ﬁEF uithout passuword chech: or not.

Force BASIC text input to: UPPQ? case gr _not.

Allow 21l input requests.io cose frcn LHAIN file or_not.

Engble keyboard repest or not. o

Humber of 25ms intervals before first repﬂat (?equzres Al=Y),

Number of write/verify retries ‘before "error" :

Highest printable character value,

Frompt operator for -date/time 3t power-up or or_use zeros.,

Prompt operator for date/time- 3t reset or use,¢¢ev10ns value.

Force ROUTE,DO,NL 3t reset or nct.‘ » :

Clock is 30 cps or 40 cps (HUd'lII Oﬁls},

Allow operator to pause or cancel chazn:no or- gt (requ;res ab= ﬁ).

Allow operator to override AUTO at reset or nat (rEmeres A?ﬁﬂé

Enable “R" as "repeat" 00S canﬂand ar not. e :

Farce LCDVR,Y 3t reset aor’ ﬂﬁiﬂﬁﬁnﬁ—I only), :

Force LC,Y at reset or not ¢ éqmres BF=Y 1f Hod =I¥,

Enable cursor blznkxng or _not. v

New value of cursar character (if nct zero).

Tining loop multiplier (fcr speed~up ncds).‘ _

Enadie WRUIRP Lommand arid DIRCHEC} s W and C options or not. -

RESERVED, »

Follow format by full diskette ver1f3 or ﬁOte ~

Use ch~III s1nqle-den51t3 d1r~pcctee$ ar Kod-~ I TRSDAS: dfr~aratec* (Hod-I orily)

THE ABOVE IS FOR QUICK REFERENCé'ﬁSE,ONLY,

PLEASE REFER TC-THE MANUAL FOR EXAC"" SP‘:’CT"IC""-\T"’ONS.

@

The following article was rebrinted:‘: from the July, 1981 newsletter of the Chicago
TRS-80 User’s Group. Subscriptions are $12 per year from:

-7 CHICATRUG News -

- ¢fo EBG & Associates
203 N, Wabash -

- : Chicago, IL 60601

Apparat’'s NEWDOS/80 Version 2.0;

This article is not a review, but is only a discussion of same of the anticipated -
differences between NEWDQS/80 Version 1.0 (V1) and Version 2,0 (V2),. I'said”

anticipated because, as of this writing, V2 has not yet been shipped, but is
expected shortly, The description is based upon preliminary information which may
not be 100 percent accurate. Unless otherwise indicated, all information is the

same for the Model-I and Model-III implementations.

System Differences

V2 supports any combination of S-1/4" Flo‘fppy disks‘a containing 35,40, 77.,io.r 80
tracks, single or double sided, and recorded in single or doubladenéity.” A 35 or 40
track diskette may be read on an 80 track drive, VZ will not automatically change -

density as did DBLZAP-II, but the manual change does not require a "boot" and may -

be performed under MINI-DOS, In general, diskettes may be freely exchanged -
between Mod-I and Mod-III V2 systems (see the WRDIRP command), but Mod-1III
TRSDOS diskettes may not be read or written by user programs (see the COPY
command). | o S S

On the Model-I: double density requires the Pércom D\;OUB_LER,,;(tm): br equivalent,
and any double sided drives limit you to a total of three drives. Limited 8" drive
suppart is available (as in V1), but now 17 sectors may be written on a track (was
15 s

The system now contains a built-in blinking cursor and L/C driver.(no high -memory
driver is required), The keys also repeat if held dow;i-. Date and time are saved
across “reset" and the operator is prompted for the current date /~ti(£n;é,at
power-up. If the verify fails after a successful write, the system will now retry
the write / verify sequence. Each of the above features is optional using the
SYSTEM command. New attributes for files indicate whether the file has been
"racently" updated, whether the file may be extended if it needs more space, and
whether unused "grans" should be released at CLOSE time, ‘ B T

CHAIN files may now be created by SCRIPSIT (tm) or by a simple BASIC program
since a "/./#% sequence may be used instead of the hex 8% used in V1, DOS~-CALL
is now legal under chaining, including CMD".nveees® from BASIC. The "DQOS READY"
message is now suppressed during chaining, o

Command Differences

The COPY command (including CBF) will now copy Mod-III TRSDOS files to or from
single or double density V2 (or Mod-I TRSDOS) diskettes, Copy by file (CBF) will
now correctly copy an entire "system" diskette. CBF no longer requires a "system"
diskette to be resident in drive-0 and, therefore, will work on a single drive
configuration (by exchanging diskettes), CBF also has an option to copy only
“updated" files, only files having a specified "extension", or only files which are
not "invisible", Another option uses a list of file names in an ASCIT file. The
"list" may either define which files to copy or which files tg not copy.

The DIR command now has the option-to display file names which have been
"updated” or which have a specified "extension". DIR without the "A" operand will
now list names 4-across. DIR with the "A" operand lists one name on a line, byt
with much more infarmation than did V1. '

The ATTRIB command will now set or reset the three new attributes which were
described previously,

The new CHNON command allows chaining to be temporarily suspended so that
input may be received from the operator,

The new CLEAR command cancels device routing and exit routines and, cptionany,
sets free memory to zeros.)

The new CREATE command pre-allpcates a file with a specified numb-er of records
of a specified length, It will also, optionally, set the attributes to not extend or
to not contract the file, S

The DEBUG function is now a‘ctiva‘;ted pynly_b‘y 1-2-3 (not by BREA’K)‘and‘there, is
now a "Q" option which will purge the current program and return you to DOS
READY. T

The new DO command is identical to the CHAIN command.
The DUMP command has a new operand to specify a relocation address,

The LIST and PRINT commands now allow the specification of a "line count* in
addition to the starting line number. Control characters will now be translated to
periods and the "graphics® bit will be ignored. What this means is that :'EDTASM
source files may now be listed (tabs are not expanded but line numbers are
readable) and /CMD files may he listed without garbaging up the video display,

The PDRIVE command now has several mare operands, and up to Io'sp-eci_{:icationé,
although there is still a maximum of 4 real drives. The others may be preset to
desired configurations and used as “models" to quickly change the definitions of
the real drives., The command always updates the disk resident table, but now has
the option to also update the memory resident table, causing the chéngéé to take
effect without a "boot", ’ :

The PROT command will now optionally reset the "updated” flags for all files oﬁ

the diskette.

The PURGE command now has the option to process only those files hawvang a
specified wextension” ar those which are not "invisible". ‘

The new ROUTE command supports limited device routing, including output
suppression and "in memory" devices. However, no editing is performed on the
data to remove device dependent control characters (eg., if the Video is routed to
the PRinter, the "cursor off* control character will start underlining on my
Centronics 7370, :

The new WRDIRP {WRite DIRectory Protection) command fixes directory protéction
problems in cinqle density due to the differences in disk controller chips between
the Mod-I and the Mod-III, There is an equivalent option in the DIRCHECK

utility.

The new FORMS and SETCOM commands are available only on the Mod-III and are
very similar to those in Mod-III TRSDOS.

The new CLS, ERROR, PAUSE and STMT commands are used to display messages
from within a CHAIN file.

The HIMEM, DATE and TIME commands will, if no operand is speciFied, display t-he
current value. .

The new LCDVR (Mod-I only), LC and BLINK commands control the state of the
blinking cursor keyboard routines.

Utility Differences

DIRCHECK now has the optian to zero unused entries in the directory and to fix
single density diskette directories exchanged between the Mod-I and the Mod-1II
(see the WRDIRP command). . Chateih

DISASSEM now has the option to write the output into a disk file so that it may be
re—assembled,) ‘

LMOFFSET now has the ability to convert a load module to a "system” tape o} t‘,o
copy "system” tapes. : ‘

SUPERZAP will now encode passwords and HIT values to fix broken directories (in
conjunction with DIRCHECK). A file (or the entire diskette) may be searched to
find up to four hex bytes. A load module may also be searched for up to four hex
bytes, but imbedded loader information will be ignored. It also has the option to
zero part (or all) of the current sector. ‘ '

BASIC differences
Forward and backward full page scrolling is naow supported using the "@" and ™"

keys respectively, The screen will scroll up to 14 lines per command, but lines will
never be broken between screens. The REF command now has two new dption‘s'to

allow searching the program for "reserved" words or for “text” (as in PRINT or
REM statements),

New aptions of the CMD"F=,.,.," allow you to (1) change the string area size
without CLEARing all variables; (2) CLEAR a list of variables, leaving the rest
intact; (3) CLEAR all except a list of variables) (4) DELETE a range af line
numbers. .

The MERGE command may . now appear as a program statement to include another
BASIC program (ASCII or compressed) within the current program and then continue
with the statement following the MERGE with all variables intact.

The RENUM command will now allow, as an option, undefined line numbers outside
the range of lines to be renumbered. This change, in conjunction with those in the
two preceding paragraphs, become NEWDOS/80‘s BASIC overlay structure,

BASIC now supparts the TRSDOS syntax for variable length “random” files (in
addition to the V1 extensions to BASIC)., CMD"C" will compress the spaces and
REMarks from the current program., CMD"J" will convert between Julian
(-YY/DDD) and calendar (MM/DD/YY) date formats. :

CMD"O" is an in-memary BASIC array sort which will sort arrays of any variable
type, ascending or descending, and combinations of up to 2 arrays into the same
sequence, String arrays may use a "MID$" type of notation to specify that only
part of each element will be compared during the sort. A second option ("indirect™)
will sart up to 8 arrays, producing an "index® vector, but leaving the other arrays
unchanged.

CMD"F=SWAP" will exchange the contents of two variables. CMD"F=558" turns on
"single stepping” in the BASIC program! the next line number appears at the top
of the screen and waits for ENTER or BREAK., :

MODEL [}

MICRO COMPUTER

Apparat Incorporated takes pleasure in presenting NEWDOQS/80,
Version 2.0. Above is the registration number of your NEWDOS/80.
This registration number must be the same as the registration
number you find on your diskette labei and the enclosed registration
card. if they are not, return them to the dealer from whom you
purchased your NEWDOS/80 to be reissued. This registration Num-
beris your assurance of receiving any corrections or minor revisions
to NEWDOS/80 that may be released. The registration card should
be completed and returned to Apparat at your ealiest convenience.,
PLEASE RETURN THE CARD IT IS IMPORTANT! It is our only
method of determining who has purchased this copy of the system.
This number shoud be included in alil correspondence with Apparat.

y Apparat,inc.

4401 So. Tamarac Parkway e Denver, Colorado 80237

NOTICE

NEWDOS/80 is distributed on .an "AS IS" basis only and without
warranty. Neither Apparat Inc. nmor any authorized dealer of
NEWDOS/80 shall have liability or responsibility to any person
or entity with respect to any liability, loss or damage caused
or alleged to be caused by the computer programs constituting
NEWD0S/80, including but not limited to any interruption of
service, loss of business or anticipitory profits or consequen-—
tial damages resulting from the use or operation of such
computer programs.

Good programming practices dictate that frequent backup copies
be made to protect active files. Also, valued data should not
be used under an unknown system until it has been thoroughly
tested. :

All rights reserved. Reproduction or wuse, without express
written permission, in any manner, is prohibited. No liability
is assumed with respect to the use of nor for any damages that
may result from the use of any information contained herein.

All NEWD0S/80 software 1is copyrighted by Apparat Inc., who
authorizes each NEWDOS/80 owner the right of duplicating the
contents of the NEWDOS/80 diskette, provided such duplication
is for the sole personal use of said owner. Any other
duplication of MNEWD0S/80, in whole or in part, is strictly
prohibited. ”

TABLE OF CONTENTS

Chapter 1 INTRODUCTION

1.1 REGISTRATION. .. evverevennnnnnnnn T T T .1-1
1.2 Trademark Credits...eeeneeeiiiineinniiinninininannnn. . <1-1
1.3 What is Apparat's NEWDOS/80 version 2%....eeeeeeiinnunnnnnnnn.. .. L1-1
1.4 Duplicate and Specify the System.ueeeeeeeeennnnnnnnennnnnnnnn. ... -1-2
1.5 Apply OuUtstanding ZapPSe.eeu.iieiernneeonnneneennnneneennnnnnnnnnn. . -1-4
1.6 Commence Using NEWDOS/80........ B -1-5
1.7 ACKNOWledgementS . ue i ettt itaeiiite e «1=5

Chapter 2 DOS LIBRARY COMMANDS

2.1 Notation Conventions and General INformation................. R !
2.2 APPEND Append one file onto the end of another............... ceo2-2
2.3 ATTRIB Assign attributes to a fileweeeeowoo.... teteenreectniteaan 2-3
2.4 AUTO Define the DOS command to be executed at reset........... 2-5
2.5 BASICZ Activate non-disk BASIC (Model I only)..eeeee...... tecoene 2-5
2.6 BLINK Enable/disable cursor blinking..ue...eee.eeoooeoounn.... o< 2-5
2.7 BOOT Reset the computer.....c.eceeeeenen.... Crereecrcecanaeaans 2-6
2.8 BREAK Enable/disable the BREAK Key.ueeeuuuseoennnennsnnnnn... . 2-6
2.9 CHAIN Shift to keyboard input from diskeeeeeeeeeeeeonowoenn.... 2-6
2.10 CHNONW Alter chaining state....eeeeeencan.. cecnne teeeseetteaaean 2-7
2.11 CLEAR Clear user memory, routes, timer and logical enqueues....2-8
2.12 CLOCK Display the time every Secondesceeeeeeeceeeoseeennnnnnn.. 2-9
2.13. cCLS Clear the display.eeveeeceeevencennnn. seeccasenas ceeaan e 2-9
2.14 COPY Copy single or multiple files or a full diskette........2-9
2.15 CREATE. Pre-allocate a disk file........ cecenas Seeerseentnecennae .2-18
2.16 DATE Set COmpULer's dateseeesineeireeeeccenannencnnnnnnnnnnnss2=19
2.17 DEBUG '~ Enable or disable the DEBUG facility.ieeeeanann. cessenese2=20
2.18 DIR ° Display a diskette's directory informatioN.....eeee.o....2-20
2.19 DO Shift to keyboard input from disk......... eetecensansaese 222
2.20 DuMP Dump memory contents to disKeeeeeeeeeeuooeooaennnnennnn... 2-22
2.21 ERROR Display DOS error message......... D P~ dae’ £
2.22 FORMAT Format a diskette for use with the NEWDOS/80 system......Z-24
2.23 FORMS~ Set printer parameters (Model III ONlY)eeeeinnnnnnannans . 2-26
2.24 FREE Display free granule count of each mounted diskette......Z-27
2.25 HIMEM Set DOS's high memory value............ cececttcnensennaaa 2 =27
2.26 JKL Send current contents of display to the printer...... ceee2Z=27
2.27 KILL = Delete @8 fil€eueveeeeeeeeneooonoooonnnmnn.. ceecrtetstscacenn 2-28
2.28 1Lc Set keyboard a-z toggle switch to the specified state....2 —29
2.29 LCDVR Lower case driver (Model I only)eeeueeeeeeennencennnnnn..2—29
2.30 LIB Display NEWDOS/80 1ibrary cOmmANdS..eeeeeoueeeennnn.... .ee2-30
2.31 LIST List a text file on the display...e.eeee.... cessencscacass2—30
2.32 LOAD ° . Load a Z-80 machine language file into RAM...............2—31
2.33 MDBORT Terminate MINI-DOS and 20 to DOS RFADY.eeeicnernnennneaas2—31
2.34 MDCOPY Copy a file while under MINI-DOS. ¢ eieeeeeeenenncnngonnene2—32
2.35 MDRET Exit from MINI-DOS and return to main Program..cececeses..2—32
2.36 PAUSE Display message and pause on ENTER e et eeeennncncnccnnnnans 2—33
2.37 PDRIVE Assign default attributes to a physical drive...ceeecea... 2—33

1ii

2.38 PRINT List a text file on the printer..ccecsccecsccccoccccrncnns 2-39-
2.39 PROT Alter some diskette control data...c.cceec.n. ssesessacanan 2-40
2.40 PURGE Selectively KILL files from a diskette...c.sceecececrocces 2-41
2.41 R Repeat the previous DOS command....eeesecccecenovocccces . 2-41
2.42 RENAME Rename 38 file.eoseceaioosovass heeessceacsenscesnn Caesnennn 2-42
2.43 ROUTE Route one device to or from another...cecececcceccccccccece 2-42
9.44 SETCOM Set RS=232 interface parameters (Model III onlyleceeccees 2-44
2.45 STMT Display specified messag@ececccececcsccccncne ceseacnsass .o 2-45
2.46 SYSTEM Change SYSteMecececsaceoseoscoccnoecroconaccccanocorscses . 2-45
2.47 TIME Set the real time cloCKeeesceossoeeccsscescocnnne cenense .ee2-50
2.48 VERIFY Require verify read after every disk writ€eeecaee cascenn . 2-51
2.49 WRDIRP VWrite directory sectors protected..eescescecoscconcanccs . 2-52
Chapter 3 DOS ROUTINES

3.1 Specifications Defined...e.ceeeececesncacnoccrcenoraanenorrencns - 3-~1
3.2 402DH NO—ETrror EXifeeesececscccasscescscasescccascnacs cesensann «3-1
3.3 4030H Error-already-displayed DOS Error Exit....ceeeccccccecs . e3-2
3.4 4400H No~Error Exit..3—2
3.5 4405H Enter DOS and execute a COMMANdececsesacssacssasssasasses s3I
3.6 4409H DOS Error Exit..-3—2
3.7 440DH Enter DEBUG eevecusccscocccsccnes cameesene cesesscessasen =3-3
3.8 4410H Enqueue a user timer interrupt TOULiNe.eeaveascecssacance «a3-3
3.9 44131 Dequeue a user timer interrupt TOULIN@ecsansnenenrannccea «3-4
3.10 44161 Keep drives rotating..-cecececseccecs .
3.11 441 9H DOS-CALL Execute a DOS command and retUrNececsceccecces -3-4
3.12 441CH EXtract a8 fileSpeCeccceassscencescsccescsaccoscscncacces «3-5
3.13 4420H Open a FCB to new or existing disk file.eeecsoocecceanes «3-5
3.14 44241 Open a FCB to a existing file......... teecescssassacsees =30
3.15 4428H Cl0Se @ FCBuseeveossnsonnassonsonssancacsancsancccsnses —
3.16 442CH Kill FCB's associated fileeeceeeccsorccccacenrccncncacen - 3-7
3.17 4430H Load a program fileseeeceeseoocsssccecannosoccrcnnonnncc «3=7
3.18 4433H Load and commence execution of a program fil€eeeoesoanae =37
3.19 4436H Read sector or logical record from diske.cececccccccccee «3-7
3.20 4439H Write sector or logical record to disKeecesesecceccacccce -3-8
3.21 443CH Write sector or logical record to disk with verify read. .3-9
3.22 443FH Position FCB to start of file.c.ececcerconcencnscncccocanse -3-9
3.23 44421 Position FCB to specified file record..ccecscecccccccccce «3-9
3.24 4445H Position FCB back one recordeececceececcssceccsccacccnns . 3-9
3.25 444841 Position FCB to EOF.cececcscosccrcccencssccrsncocncocccs -3-9
3.26 444BH Allocate File Spac@..ceeeccscessescsasccsecnccacccscccrccs -3-10
3.27 444EH Position FCB to specified RBA......c..... ceessesancaceaa= -3-10
3.28 4451H Write the EOF value from the FCB to the directory......- -3-10
3.29 445BH Select and power up the specified drive.......ccccccee - «3-10
3.30 445EH Test for mounted diskette..ecsecece-e tecaevenane cassascec = .3-10
3.31 4461H *pname TOULINE eNQUEUE...sccceseassssoccssescaavocseccncse .3-10
3.32 44644 *name routine dequUeue..cceceesecssccecooaaes cessaceseenc= .3-11
3.33 4467H Send message to the display..ceccececca-ne T R 0 |
3.34 446AN Send message tO the printer.c..c.cececceecescccnccconanccs = .3-11
3.35 446DH Convert clock time to HH:MM:SS character format.eceeesss = «3-11
3.36 44700 Convert the date to MM/DD/YY character format.......... - s3-11
3.37 4473H Insert default name extension into filespec....cc..e.c.-- .3-12
3.38 00131 Read a byte from a disk F1l@eveeanacscsanonsossssacsons= .3~-12

iv

3.39¢ 001lBl Write a DYLE £0 G dish £11€eennnnnetonineenenennancennnns S=iZ
3.40 447BH Model IIT only (perfeorms as Model T &4106H)einnnnnnn.. 3-12
Chapter 4 DOS FEATURES

4.1 DEBUG Facility.......--.-....... ------- o9 e e m e eons DI I A A R I 4""1
4.2 MINI“DOS-.--o..ooooco;a-o.on-oocoo ooooooooo * s e s ee s LI RN SR P 4—'5
4.3 CHAINING. cevunvsnesvsscccssecoacnnsnsascocnsss aresan cereresasensen 47
4-4 DOS"CAIJL.-.....-...-..--0--.-0.0.0-.-0 *» o e s e I E R E Y e ‘4""12
4-5 JKIJQ...Q‘.O‘O....‘..Q...l.‘....‘... ------------------------------- 4"13
4.6 ASynchronouS EXeCULIiOMeeseruenecsasceeneassosrsaosocaanncanssssseness 414

Chapter 5 DOS MODULES, DATA STRUCTURES, AND MISCELLANEQOUS INFORMATIOR

5.1 Files Required on each diskette used with NEWDOS/80...ccceeeeneeaas=1
5.2 NEWDOS/80 DOS system MOdULeSe.euiececeocceceanceeesccennnnoes ceeeaea 5-1
5.3 NEWDOS/80 BASIC ModuleS..eeeeeecaneas "eeescssstscseassanscerraacened=2
5.4 Other Modules on the NEWDOS/80 disketteeeeeeceeerenencennnaoaneeee5=3
5.5 Reduced Sized SySLemS.cessasesssensoesoacsasanansncncasoesnses ceeead=b
5.6 Diskette Directory StrUCEUICeeecsasccesvecsoacsssanncscnass creesned=b
5.7 FPDE File Primary Directory Entry..... Sesesecssasssnanansas ceee5=7
5.8 FXDE File Extended Directory ENtIVeceeeeccseccscenocanas P
5.9 FCB File Control BloCKe.useeeoeeaeecensnsnconcsccconosnnnncns see5=9

Chapter 6 ADDITIONRAL PROGRAMS SUPPLIED ON NEWDOS/80 DISKETTE

6.1 SUPERZAP Inspect/Change Disk/Main Memory.........................6 1
6.2 DISASSEM Diassemble Z-80 Codeevencerananaannnn esessessvsansnscsssB=9

6.3 LMOFFSET Move Module to New Load PoOSitiONeeeeeccecocccscncosoceeesbB=9

6.4 DIRCHECK 1Inspect and List 8 DirecCtOrYeeecececcescaceccenncacanaesb=12
6.5 EDTASM Editor/ASSemblereeeeeeeceeececenecencasocsacocacnsnnnesob=ld
6.6 CHAINBLD Create and Modify Chain FileS.ueceeccseosccnceennscnonvacabeol6
6.7 ASPOOL Automatic SPOO0lerececaccececscssesencscancsencncsaseaasaeeb—=19

Chapter 7 DISK BASIC, NON 1/0 ENHANCEMENTS

7.1 INTRODUCTION, ReqUirementSeeecececescssccosascassaannscacosccnassasl~1
7.2 General Comments..7—1
7.3 Activating DISK BASICeseeanaeeacococnacenscacsassecssasnnnnannnneel=2
7.4 . DIRECT Scrolling/Editing ComMANAS..eeeeeeeennsccncscenccnoncanasssl=3
7.5 = Text Editing Command TruncCatioNeeceeeeececeseccncacecccaceneenenssl=b
7.6 DI and DU text editing funCLionS.iceeceeecccasecnensecncccoceecenel=d
7.7 RUN and LOAD (optionally retaining variables).seeeeeceeeeecceeceee.7=b
7.8 MERGE Dynamic loading of overlay prograMecccceecececesccccoacccnaes =5
7.9 RENUM renumber the current BASIC DProgramMescccceccccececocencoccens 7-5
7.10 REF List references to variables, line numbers and keywords......7-7
7.11 Lower Case Supression (Model I only)eeeeeeseann.. P T -

7.12 RUN-ONLY...,........7-8‘
7.13 Comparisons ip the use of CHp between NEWDOS/80 and TRSDOS........7—B
7.14 CMD"doscmd".........7-11
7.15 CND"F=POPS", CMD'"'=popp* an CND"F=POPN"...........................7‘12
7.16 CND"F=SASZ"...................'........... e R T A i
7.17 CMD"F=ERASE" and CMD"F=KEEP".................-.-.......'..........7—12
7.18 CMD"F",DELETE.................-......................... cese./=]12
7.19 CMD"F=SWAP"......................................-................7-13
7.20 CMD"F=SS".....................-..............................;....7-14
7.21 CMD"O“...............................;................ eve7=15
RENEW

7.22 .Q-".Q'Q‘....'..“-..‘n"‘...'.‘...-.‘v'..

Chapter 8 DISK BAsIc, 1/0 ENHANCEMENTS

8.7 OPEN..8—9
8.8 GET... R R
8.9 PUT.......u..;......8—14
8.1 REMRA and REMBA Treeseresa...8-16

Additional notes about BASIC I/O..................................8—20

Chapter 9 ERROR MESSAGES

9.1 DOS Error Codes and Messages......................................9~1
9.2 DISK BASIC Error Codes and Messages...............................9—2

Chapter 10 GLOSSARY

Chapter 11 NEWDOS/ 80 PATCHING (zAPPIRG)

11.1 Introduction..
11.2 Incompatibility Handling..ll—l
11.3 Reporting of NEWDOS/80 Errors and Incompatibilities...............11-2
11.4 Format of NEWDOS/ 80 Zaps..ll~2
11.5 Zapping Procedure....................................
11.6 NEWDOS/80 Zap'Distribution............................... «.11-5
11.7 Initial Installation of Zaps.................... e eeaaiaa.a.. .11-5
11.8 Subsequent Installation of Zaps................... e, 11-6
11.9 Diskette Update Service.................

11.10 zap Duplicacion...............

Chapter 12 MISCELLAREQUS COMMENTS

12.1 RABs gain in respectibility. e eieieiininninannennnnennnnnnnnn.. 12-1
12.2 Converting from Ver. 1 to Ver. 2 on the Model Tuvuiveuueuuununnnn... 12-2
12.3 Converting from Ver. 1 Model I to Ver. 2 Model IlI........ Cesenena 12-5
12.4 NEWDOS/80 Ver. 2 incompatibilities with TRSDOS Ver. 2.3........... 12-6
12.5 NEWDOS/80 Ver. 2 incompatibilities with TRSDOS Ver. 1.3........... 12-7
12,6 Miscellaneous CoOmmMENtS.eseeeeeeeeesneeenneenoanonns. Ceseenerenasa ..12-8

Chapter 13 ZAPS (PATCHES)

APPERDIX A Discussion and example of NEWD0S/80 file routines.
APPENRDIX B Example of fixed and marked item file usage
INDEX

vii

1. INTRODUCTION.

1.1. Registration.

As soon as you receive your NEWDOS/8f, fill out and mail the registration card.
Apparat will limit its assistance and patches (zaps) to registered owners only.
In your communications with Apparat, always state your name, address and your
NEWDOS/8@'s registration number. For Version 1 of NEWDOS/8f we had many com-
plaints of not receiving zaps from users who had not sent in the registration
card. Apparat does not require the owner to agree to anything when filling out
the NEWDOS/80 Version 2 registration card; just let us know who you are.

1.2 Trademark Credits.

Throughout this manual certain trademarked names will be used to refer to those

trademarked products. Since our printers do not have the tm symbol, we will

acknowledge the trademarked names here. If we have missed rendering an ac-

. knowledgement, please forgive us as we do not mean for any trademarked name to
be used to refer to anything that the trademark holder does not mean it to

refer to. In some cases, such as VIOS, the primary manual for that system

shows the name trademarked but does not say who it is trademarked to.

TRS~-8f is a registered trademark of Radio Shack, Inc.

. TRSDOS is a registered trademark of Radio Shack, Inc.

VIOS is a registered trademark.

LDOS is a registered trademark of Lobo Drives Internmational.

. DOUBLER is a registered trademark of Percom Data Company, Inc.
SCRIPSIT is a registered trademark of Radio Shack, Inc.

[« QMW T R U R A
. . .

1.3. VWhat Is Apparat's NEﬁDOS/SQ Version 27

Almost all disk based computer systems use a Disk Operating System (known as a
DOS) to provide a software interface between the user program performing disk
I1/0 and the actual disk drives and their controllers. Usually these operating
systems perform many other functions as well such as controlling what user pro-
gram is executing and the allocation of disk files and file space. Believe it
or not, the primary function of a DOS is to make life easier for the computer
users and programmers. NEWDOS/8@ is one of a number of DOSs that operate with
the TRS-8@; in this case only the Model I and Model III are supported.

NEWDOS/8f Version 2 is the replacement for NEWDOS/8f Version 1 that was re-
leased in June, 198§ and for NEWDOS/2l1 that was released in March, 1979.
NEWDOS/8@ Version 2 is a disk operating system designed to operate on the
TRS-8§ Model I and the TRS-8f Model I1I. A particular NEWDOS/88 Version 2
master diskette is tailored to operate on only one of the two TRS-8f models; if
you wish to operate on both the Model I and the Model III, you must purchase
different NEWDOS/8@'s for each. The TRS-8f model being used must have at least
32K of RAM and at least one 5 inch, single sided, 35 (49 for the Model III)

1-1 TNTRONICTTAN

track disk drive (mounted on drive §). HModel 1 NEWDOS/8P Version 2 s distri-
buted on a 35 track, single sided, single density diskette, and Madel 117
NEWDOS/8¢ Version 2 master diskette is distributed on a 49 track, single sided,
double density diskette. You must have a disk drive capable of handling the
master diskette.

NEWDOS/8p Version 2 for the Model 1 and NEWDOS/84 Version 2 for the Model 111

- are mostly downward ceompatible with NEWDOS/88 Version 1, NEWDOS/2! und Model 1
TRSDOS 2.3, but it will be necessary to maintain certain programs with differ-
ent copies for all four systems for incompatibilities do exist. NEWDOS/8p
Version 2 is more incompatible with the Model 111 TRSDOS Lhan it is with Lthe
Model I TRSDOS, and most prugrams and files will have to be maintained differ-
ently in the twu systems. In the past, while TRSDOS was largely dormaut,
attenmpts were made to limit the incompatibilities between NEWDOS an.l TRSDOS,
but now that TRSDOS is being actively updated more and more incompatibilities
are appearing between the two systems. TRSDOS is going one way; NEWDOS/8@ is
going another. If this limits and eventually destroys NEWDOS's usefulness to
the users, so be it. NEWDOS cannot and should not exist to be a nirror image
of TRSDOS; if the user wants that, then please use TRSDOS. NEWDOS was acci-
dently created in the huge vacuum left by Model I TRSDOS, has always incorpo-
rated features not in TRSDOS and, in Version 2, has not implemented many of the
newer features of the Model III TRSDOS. Chapter 12, sections 12.1 through 12.5
give some of the incompatibilites of NEWDOS/8f Versionm 2 with NEWDOS/ 8% Version
1 and with the Model I and III TRSDOSs.

The DOS and DISK BASIC portions of NEWDUS/8f are total rewrites from that of-
fered in NEWDOS/2l1. The requirement that the user purchase TRSDOS as a pre-
condition of use of NEWDOS/2l is not required for NEWDOS/84. Tt is still
recommended that the user purchase TRSDOS, and NEWDOS/8(users are expected to
have purchased the TRSDOS manual and be knowledgeable of its contents as use of
NEWDOS/8p assumes this user knowledge. Users of the EDTASM module are still
required, as a precondition of use of NEWDOS/8¢'s EDTASM, to have purchased
Radio Shack's tape editor/assembler.

Though NEWDOS/8@, Version 2 was tested more extensively than Version 1, there
will still be errors, and many programs will require at least a zap to work
with NEWDOS/8# Version 2. Error reporting procedures are discussed in chapter
11, and the outstanding zaps are in chapter 13.

1.4, Duplicate and Specify the System.

NEWDOS/8f is not a simple system. When the NEWDOS/8¢ user is ready to ini-
tially use NEWDOS/8f, he/she should spend one to two hours studying the docu-
mentation before doing anything with the NEWDOS/8@ diskette.

When ready, put a write protect tab on your NEWDOS/8p Version 2 master disk-—
ette. Then power up your computer, place the master diskette in drive § and
press reset. The NEWDOS/8@ banner should appear optiovnally followed by re-—
quests for date and time. If date and time are requusted, pleuse give realis—
tic values. Next, NEWDOS/84 READY will be displayed to indicate DOS s walting
for something to do.

PhlRubUCT LUk [

It 15 good practlce to nmever mount on & disk drive thie NEWDOS/8f master cisk-
ette except to make copies of the diskette and to very carefully apply manda-
tory zaps (see chapter 11). When zapping, you should first apply the zaps to a
working Version 2 system diskette and test them out before applying them to the
master diskette. Keep the master diskette stored away in a safe place; do not
keep it in your NEWDOS/8f manual and do not use it in normal operations.
Apparat will not replace a lost master diskette though it will, under the terms
for the diskette update service offered in section 11.9, replace a damaged

diskette.

Enter, via the keyboard, the DOS command:

LIB

A list of all the DOS library commands will be displayed to you. These com~
mands are defined in chapter 2 with examples. :

Enter the DOS command:
DIR,#,S,I

A list of all the files on the NEWDOS/8f Version 2 master diskette will be dis—
played. These files, except for NWD82V2/ILF and NWD82V2/XLF, are discussed in

chapter 5.
Fnter the DOS command ;
SYSTEM, §

NEWDOS/8f offers the user certain system options which are specified via the
DOS library command SYSTEM (see section 2.46) and activated during each compu-
ter reset. The DOS command SYSTEM,$ you just executed has displayed the state
of all SYSTEM optioms, and you should compare these value carefully against the
‘specifications. You may decide that your system is to use different SYSTEM
specifications. You may change them now if absolutely necessary; otherwise you
should wait until after you have made a few backup copies of the master disk-
ette. Whenever you decide to update the master diskette, don't forget to take

off the write protect tab.
Enter the DOS command
PDRIVE, ¢

NEWDOS/8f can operate with a limited mixture of disk drive and interface types.
The characteristics of each of the physical drives $ — 3 must be specified to
the system via the DOS library command PDRIVE (see section 2.39). These char-
acteristics are then read by DOS during each computer reset. The PDRIVE com-
mand you just executed has displayed the existing drive specifications plus 6
psuedo drive specificatioms. You may want to change the specifications for one
or more drives. You may do so now if absolutely necessary; otherwise you
should wait until you have a few backup copies of the master diskette.

Now you must make three or more copies of the NEWDOS/8¢ Version 2 master disk-

ette. If possible, perform these initial backups without changing any of the
SYSTEM or PDRIVE parameters. If not possible, change them the minimum neces-

1-3 TNTRANHATTAN

sary and do a reset when done. You shonld carefully study sections 2.14, .39
and 2.46.

NEWDOS/ 89 does NOT have a BACKUP module; format 5 or 6 of DOS library command
COPY (see section 2.14) is used instead. For each of the backups you are abcut
to do, the master diskette is both the system and the source diskette while e
destination diskette is the diskette to contain the new working copy of the
NEWDOS/ 8@ system. Some examples of the COPY command you will use to make
copies of the NEWDOS/89 Version 2 master diskette are:

COPY,9,8,,FMT,USD For a single drive system where the master and copy
diskettes have the same PDRIVE characteristics.

COPY,9,1,,FMT,USD For a multiple drive system where the master and
copy (mounted on drive 1) diskettes have the same PDRIVE characteristics.

COPY,@,ﬂ,,FMT;USD,CBF,DPDN=4 For single drive system wherein the
destination diskette has PDRIVE characteristics different from the master
diskette. You must have Previously altered the master diskette PDRIVE
speci~ fication for drive 4 (remember to use the A option or to reset the
computer after changing the drive 4 specification).

COPY,9,1,,FMT,USD, CBF For a multiple drive system where the drive 1
drive will be moved to drive p after the copy and the destination drive

has different PDRIVE characteristics than does the current drive . You
must have previously altered the master diskette's PDRIVE specification

for drive 1.

Fach system diskette has its own set of SYSTEM and PDRIVE characteristics.

. Therefore, for each working copy of NEWDOS/8f Version 2 you make, after the
copy 1s completed, you need to set that system diskette's SYSTEM and PDRIVE
characteristics for the operating conditions it is to operate with.

The NEWDOS/8@ owner is authorized to make as many copies as necessary of the
NEWDOS/8p diskette or individual programs thereon for his/her own personal use.
NEWDOS/8@ owners and users are specifically prohibited from copying the
NEWDOS/8) diskette or individual pPrograms thereon for use by others. See cory,
formats 2 and 4, in section 2.14,

1.5. Apply Outstanding Zaps.

Before your NEWDOS/8¢ is ready to run user programs, review the outstanding
zaps to both NEWDOS/88 modules and to other modules (such as EDIT/CMD and
SCRIPSIT) that require patches to work properly with NEWDOS/8@. Chapter 11
explains how to apply zaps (patches), and with your NEWDOS/89 should have come
a chapter 13 which contains the zaps. If part or all of chapter 13 is not in
the proper place in the manual, please put it there. Mandatory zaps must be
applied; optional zaps are at user discretion.

Mandatory zaps to NEWDOS/8¢ modules should be applied to all copies of the
NEWDOS/8p Version 2 master diskette and to the HEWDOS/&$ Version 2 master
diskette. DO NOT start applying the zaps until you have at least 2 or 3 good
backup copies made of the HEWDOS ' 38 diskette.

INTRODUCTION 1-&

1.6. Commence Using NEWDOS/S8J.

Once all backup copies of the NEWDOS/8§ Version 2 system are made, zaps appli-
ed, system options and drive characteristics specified, you are now ready to
use NEWDOS/8§.

Put away the master diskette and mount in drive § one of the system diskette
just made. Then press reset to re-~initialize DOS using the new diskette.
NEWDOS/8¢ READY will then appear. The USEer may now type in a DOS command,
which is either a DOS library command as discussed in chapter 2 or the name or
name/ext of a user program to be loaded and run. If a user program does not
have a name extension, name eXtension CMD is assumed. Examples:

BASIC causes the load and execution of program BASIC/CMD.
'SCRIPSIT/LC causes the load and execution of program SCRIPSIT/LC.

If the DOS library command or the user program requires or allows for parame-
ters within the DOS command, one or more spaces or a comma must follow the
command name and preceed the parameter(s). Examples~

BASIC,5,6580p
DIR1 A

For virtually all programs to be executed under NEWDOS/8f, there are instruc~—
tions on how to use the program that usually comes with the program when you
buy it. For NEWDOS/ 8¢ program modules, the instructions are in chapter 6 ex-
cept for BASIC which is covered in chapters 7 and 8.

Those users upgrading from NEWDOS/8g Version 1, NEWDOS/2l or TRSDOS to
NEWDOS/8f Version 2 should read sections 12.1 through 12.5 carefully.

1.7. Apparat Thanks Its Beta Testers.

Over forty persons throughout the United States and Canada were involved in the
testing of NEWDOS/8f Version 2, finding errors, suggesting enhancements and
providing criticism. Apparat and the NEWDOS/8p author thank each one of these
beta testers for the long hours spent working with the three beta releases that
were sent out. It is Apparat's policy that each beta tester receive a compli=-
mentary copy of the final release of NEWDOS/8¢ Version 2.

1-5 INTRODUCTION

2. DOS LIBRADNY COHMANDS,

2.1. HNotation Conventions and General Information.

All DOS commands terminate with an ENTER. JIn subsequent specifications, the
ENTER is not shown, but the user is to supply it.

DOS commands are limited to a total of 8f characters, including the concluding
ENTER.

[] A set of brackets are used to enclose an optional parameter. When using
the optional parameter in a DOS command, the [] are not included.

Example:

[,PROT=xxx][,ASE=yn][,ASC=yn]
could be coded as

»PROT=READ, ASC=N

Upper case A - Z and non alphanumeric characters are to be included exactly as
shown. See the above example.

Lower case letters or words with or without trailing decimal digits. These
represent prototype values for which the user is to substitute the appropriate
actual values. See the above example.

In some cases where the prototype will be replaced by one and only one char-
acter, the prototype word contains, in lower case, all the characters legal for
that value. This helps serve as a reminder of which characters are legal re-
placement for that prototype value. For example, if ASC=Y and ASC=N are the
only two legal ASC values, then the prototype will usually be written as
ASC=yn.

Vhere commas are used in DOS commands, they may be replaced by one or more
consecutive spaces.

Numeric values without a suffixed H are considered decimal values unless
otherwise specified. Hexadecimal values must be suffixed with an H unless
otherwise specified. Example:

4PPPE and 16384 are the same value.

When specifying a disk file, the term 'filespec' is used. A filespec is of the
form: ~

namel[/extl][.passwordl][:dnl]
Parameters must be specified in the above order.

namel is the file's name comsisting of 1 -~ 8 chars of which the first must
be A - Z and the others A - Z or § - 9.

extl is the name extension (i.e., CMD, BAS, OBJ, CIM, TXT, DOC, COM, etc.)
which classifies a file. A file need not have a name extension, but if it

2-1 : DOS LIBRARY COMMANDS

B N

does it must be 1 - 3 chars of which the first must be A - Z and the
others A~ Zor § - 9. Tf a file has a name extension, all filespecs re-
ferencing the file must include the name extension, unless a default name
extension is provided for (i.e., /CMD).

passwordl is 1 - 8 chars of which the first must be A — Z and the others A

-2 or § - 9. Passwordl is the value given to both the access and update

passwords for a file when it is created. Passwordl is value used in

password checking when an existing file is opened. Passwordl is required

in a filespec if passwords are enabled and the file has passwords assign-
ed; otherwise it is not.

dnl is the drive # of the drive which has the diskette containing the
file. Examples:

MYFILE8@/BAS.YOURPW8P : 9
MYFILE:3
YOURFILE. YOURPW

NEWDOS/SQ will accept lowercase in all DOS library commands and any further
input that might be queried for.

For each DOS iibrary command, the command keyword is stated along with a brief
definition. Next, if the command is allowed parameters, a prototype of the
command is given, listing all required and optional parameters. Next comes
explanations of the command, parameters and options. Lastly, some examples of
the DOS command are given.

For documentation ease, the prototype command is sometimes shown spread over
multiple lines in this document; however, the user should consider each command
as one contiguous statement.

Unless otherwise stated, a DOS library command is executable under MINI-DOS
(see section 4.2). :

NEWDOS/8p differs from TRSDOS in NOT using parenthesis to enclose parameters.
In NEWDOS/8) version 1, parenthesis around the operands were optional for
BREAK, CLOCK, DEBUG, DIR, PROT, and VERIFY; they are NOT allowed in version 2.

In the same vein, version 1 allowed the keywords ON or OFF to be used instead

of Y or N in the DOS commands BREAK, CLOCK, DEBUG and VERIFY; this is NOT
allowed in version 2.

2.2, APPEND Append one file onto the end of another.

APPEND, filespecl,[TO,]filespec2
This command will append the file filespecl onto the end of the file filespec2.
The EOF from file filespec2's directory FPDE determines the point at which file

filespecl is appended. This may be trouble if file filespec2 had explicit EOF
characters, such as in BASIC program files or c:sembler source files.

DOS LIBRARY COMMANDS 2-2

AFPETL - ATTRIB

File filespecl 1is not altered. The original contents of file filespecl are not
altered; the file is only added to.

APPEND 1is not executable under MINI-DOS.

APPEND examples:

1. APPEND,XXX:1,YYY/DAT:p The contents of file XXX on drive 1 are
appended onto the end of file YYY/DAT which is on drive §.

2. APPEND AAA TO BBB The contents of file AAA are appended onto the
end of file BBB. DOS searches the currently mounted diskettes to find

both files.

2.3. ATTRIB Assign attributes to a file.

ATTRIB, filespecl[,INV][,VIS][,PROT=xxx][,ACC=passwordl][,UPD=password2]
[,ASE=e]{,ASC=C][,UDF=U]

This command assigns attributes to the filespecl file. At least one of the
optional parameters must be specified.

If passwords are enabled in your system, then filespecl must specify the
existing update password, if any, for that file.

IBV gives the file the invisible attribute. Unless the I option is specified
in DIR, the file will not be listed by DIR.

VIS takes away the invisible attribute, whether the file had it or not.

PROT=xxx specifies the access level to be used during file I/0 if passwords are
enabled (see system option AA) and the access, not the update, password was
used to open the file. The levels are defined for values of xxx as:

LOCK Level 7. No access allowed to the file at all, except by the
system's overlay loader.

EXEC Level 6. Access allowed only to execute the file as a program.
BASIC will require either RUN or LOAD with R option, and will disable the
BREAK key, thereby preventing the user from stopping the RUN and disal-
lowing direct statement execution.

READ Level 5. Access allowed for execute or to read the file's con-
tents. '

WRITE Level 4. Access allowed for execute, read or write of the file.

RENAME or NAME Level 2. Access allowed for execute, read, write or to
rename the file.

XILL Level 1. Access allowed for execute, read, write, rename or to
kill the file.

P A TN W Y

FULL Level g. All operations are allowed on the fije.

ACC=password] Passwordl is assigned as the access password for the file. Tf
null, a value of all blanks is assumed; otherwise the value must be 1 - 8
characters with the lst = A - 2 and the others A - Z or ¢ - 9. Assigning the
access password via this parameter of ATTRIB is the only way that will enable
use of the PROT=xxx protection and then only if the access password is differ-
ent from the update password. TIf a password is specified when the file is
created, it is assumed both the update and the access Password, and the update
password has priority at open time. If passwords are enabled, the password
specified in the filespec at open time is not the update password, and it is
the access password, the current protection level is stored into the FCB for
later use by the DOS read, write, load, etc. routines. Subsequently, if an
access is attempted in violation of the access level, 'ILLEGAL ACCESS TRIED TO
A PROTECTED FILE' error will occur.

UPD=password2 Password? is assigned as the update password for the file.
The update password is of the same configuration as the access password. Dur-—
ing file open where Passwords are enabled, the password specified in the file-
spec 1s checked first against the file's update password. Tf they match, then
FULL access is allowed to the file.

ASE=e where e is either Y or N. This parameter has been added to allow DOS
Lo automatically allocate diskette space to a file if ASE=Y or to disallow
further allocation if ASE=N. ASE=Y is the default condition when a file is

created.

ASC=c where ¢ is either Y or N. This parameter has been added to allow DOS
to automatically deallocate file diskette space beyond the EOF during a CLOSE
operation if ASC=Y igs specified, and to disallow this deallocation if ASC=N.
ASC=Y is the default setting when a file is created.

UDF=u where u is either Y or M. This parameter has been added to mark the
file as updated if UDF=Y is specified or to clear the updated mark if UDF=N is
specified. The DOS System marks a file as updated whenever it is about to up—

ATTRIB command examples:

1. ATTRIB,XXX/CMD:I,UPD=ZXCVB,ACC=NMLKJ,PROT=EXEC Assigns to file
XXX/CMD located on drive 1 the update password ZXCVB, the access password
NMLKJ and protection level 6 which allows the brogram to be executed but
not read or written to. Since the filespec XXX/CMD:1 did not specify a
Password, we must assume that either password checking was disabled
(SYSTEM option AA=N) or the file did not have an update password prior to
the ATTRIB command.

2. ATTRIB YYY/DAT.0ZBV INV ASE=N ASC=N UDF=Y This command tests if
file YYY/DAT has update password QZBV, and if so, assigns the file the

invisible attribute, flags that exXtra space allocation and excess space
deallocation are not to be allowed, and lastly clears the file's updated

flag.

pol
(@]
[%2}
-t
[an]
s
&
X1
[
3
O
! o
f’
C
w
o
I
o

AUTO - BASIC2Z - BLIRK

2.4, AUTO Define the DUS command to be executed at reset.

AUTO[,doscmd]
This command allows the user to specify a 1 - 31 character DOS command to be
invoked automatically at reset time. This command is stored in the last 32
bytes of GAT sector of the current system diskette.

If doscmd is not specified, then a null command is stored in the GAT sector to
indicate to reset/power-on that no AUTO command exists.

If SYSTEM option AB = N and BC = Y, by pressing ENTER during reset, the auto
command in the GAT sector will be ignored, and the system will go to DOS READY.

AUTO is useful to the user who usually executes the same command or chain of
commands (see CHAIN, sections 2.9 and 4.3, and DO, section 2.19) at reset time.
By setting system option AB=Y or BC=N, the user is forced to this command or
chain of commands, thus allowing the person(s) controlling a computer to re-
strict the activity of users of the computer.

AUTO command examples:

1. AUTO BASIC RUN"XXX/BAS" causes subsequent reset/power-ons to
activate BASIC and to start the execution of the BASIC program XXX/BAS.

2. .AUTO DO RSACTION - causes subsequent reset/power-ons to activate
chaining from file RSACTION/JCL, thus executing the DOS and other program
commands contained therein.

3. AUTO causes subsequent reset/power-ons to go to the normal DOS
READY, awaiting the next DOS command to be inputted from the keyboard.

2.5. BAsSIC2 Activate non-disk BASIC (Model I only).

This command puts the system into non-disk BASIC. NEWDOS/80 is no longer in
the system. ‘

2.6. BLINK Enable/disable cursor blinking.

BLINK[,yn]
BLINK or BLINK,Y Blinking of ﬁﬁe display cursor is turned on.
BLINK,N Blinking of the display cursor is turned off.

SYSTEM option BH can be used to set the cursor blinking state at reset/
power-on.

2-5 DOS LIBRARY COMMANDS

BOOT — BREAK -~ CHAIN

2.7. BOOT Reset the computer.

On the Model I, this command deselects the drives and then executes Z-8f in-
struction HALT, which causes both a hardware and a software reset. For the
Model II1, since HALT does not cause a hardware reset, this instruction causes
a jump to location § to execute a software reset.

2.8. BREAK Enable/disable the BREAK key.
BREAK[,yn]
BREAK or BREAK,Y The BREAK key is enabled as a normal input key (hex-

adecimal code $1) until the next normal DOS READY, when it is set according to
system option AG.

BREAK,N . The BREAK key is disabled as a normal input key until the next
normal DOS READY, when it is set according to system option AG.

The BREAK command is useful for those programs that want the BREAK key enabled,
and enable it via a DOS-CALL (vector 4419H). The same applies to programs that
definitely want BREAK disabled. NOTE: Executing BREAK from DOS READY is use-
less since the immediate return to DOS READY resets the BREAK key according to

system option AG.

In NEWDOS/8@ the BREAK key may also be enabled by storing a @#C9H byte in Model
I location 4312H (Model III location 4478H) and may be disabled by storing a
§C3H byte in that location. In NEWDOS/8f version 1, the break key was also
manipulated by changing bit 4 of location 4369H (Model I only); in version 2
for the Model I, setting or clearing this bit does nothing and is harmless.

However, programs on the Model III must NOT alter that bit, as that location is
now in the system buffer.) :

2.9. CHATR Shift to keyboard input from disk.
CHAIN, filespecl[,sectionid]
DOS command DO performs exactly the same as CHAIN.

The purpose of the CHAIN command is to cause a predefined set of characters to
be treated as input from the keyboard. This predefined set of characters has
been previously stored in the file filespecl.

The CHAIN command places NEWD0OS/8@ in chaining mode, if not already there. The
file filespecl is opened. If sectionid is not specified, the file 1s posi-
tioned at the beginning. If sectionid is specified, the file is searched for
the matching sectionid record, leaving the file positioned at the byte follow-
ing the section ID record.

Subsequently, input that is supposed to come from the keyboard comes from the

=
|
o

DOS LIBRARY CUMLANDS

chain file until chaining is terminated by the encounter of eilther enc of fil
or end of section or until chaining is temporarily halted by the execution ©f
the DOS command CHNON,N.

Keyboard data is input from the chaining file in one of two modes.

If SYSTEM option AT = N, chaining operates in record mode. In this mode,
whenever NEWDOS/80, BASIC or any program requests a new record from the
keyboard via the standard ROM keyboard record input routine at 95D9H, the
record will come from the chain file. Any other requests for keyboard
input are honored from the keyboard and not the chain file.

If SYSTEM option AT = Y, chaining operates in byte mode. In this mode,
all requests for keyboard input characters via the standard keyboard input
routine are honored from the chain file.

The CHAIN command may be issued via DOS-CALL or via BASIC's CMD function. When

so, DOS does not immediately return to the calling program but instead contin-
ues to execute commands from the chain file until either end of file, end of

section, command CHNON,N or command CHNON,Y is encountered.

CHAIN is not legal under MINI-DOS.

The chain file creator/maintainer is responsible for assuring that chaining
does not create impossible situations for the system or user programs.

NEWDOS/ 8¢ cannot have more than ome chain file active at a time. If the new
DOS command from the current chain file is itself a CHAIN or DO command, pro-

cessing in the current file ceases and the new chain file is opened, becoming
the new current chain file.

When the system opens a chain file, name extension in the filespec defaults to
JCL if the filespec doesn't give one.

CHAINING is discussed further in section 4.3.
CHAIN or DO command examples:
1. CHAIN,XXX:9 Chaining starts at the beginning of file XXX/JCL:§.

2. DO YYY/CHN{I)qug Chaining starts at the first byte of the chain
section named QQQ within file YYY/CHN.

2.19. CHNON Alter chaining state.

CHNON , ynd
The CHNON command is used during chaining. An error will occur if a chain file
is not currently open. A CHNON command should not be the last entry in an un-—

sectioned chain file or the last entry in a chain file section as the command
will be meaningless.

2-7 DOS LIBRARY COMMANDS

CHNON ,N The current position within the chain file is remembered and chain-
ing is temporarily suspended so that subsequent keyboard characters to come
from the keyboard. If chaining was being done under DOS-CALL, the current DOS-
CALL level is exited.

CHNON,Y causes subsequent keyboard characters to come from the chain file,
starting at the current position within the chain file. If CHNON,Y was exe-
cuted as a DOS—CALL, the current DOS—CALL level is exited.

CHNON,D causes subsequent keyboard characters to come from the chain file,
starting at the current position within the chain file. Tf CHNON,D was exe-
cuted as a DOS-CALL, DOS remains at that level and executes subsequent commands
from the chain file until either CHNON,Y or CHNON,N or end of section or end

of file 1is encountered.

See sections 2.9 and 4.3 for further discussion of chaining.

2.11. CLEAR Clear user memory routes, timer and logical enqueues.

CLEAR[,START=addrl][,END=addr2][,MEM=addr3]
The CLEAR command performs the following functions:
1. Performs ROUTE,CLEAR DOS command function.

2. Dequeues all user routines in the timer interrupt routine chain that
were enqueued by the 4418H (Model I) or 447BH (Model III) call to DOS.
This includes turning the clock display off.

3. Dequeues all *name routines that were enqueued by a 4461H call to DOS.
This includes the NEWDOS/88 spooler, if active, but not its graceful ter-
mination. The spooler, if in use, should be fully terminated before
executing CLEAR,

4. Resets HIMEM to addr3 or, if addr3 not specified, to the highest
memory address. -

5. Zeroes memory from addrl or 5209H, which ever is greater, through
addr3 or HIMEM, whichever is lower. addrl must be greater than or equal
to 52pPH and less than or equal to addr3.

CLEAR command examples:

1. CLEAR,START=6{ppH, MEM=@DFFFH All routes are cleared, and all
timer and *name routines dequeued. HIMEM is set to @DFFFH. The main
memory between 6@PPH and PDFFFH is zeroed.

2. CLEAR All routes are cleared, and all timer and *name rou-

tines dequeued. HIMEM is set to the highest main memory location, and all
memory from 52¢fH to HIMEM is zeroed.

DOS LIDRARY COMMANDS 2=

CLOCK - CLs - Cery

2.1Z. CLocx Display the time every second.
CLOCK[,yn]

CLOCK or CLOCK,Y The current value of the clock is displayed every
second in positions 53-6f of the display's top line in HH:MM:SS format.

CLOCK,N The displaying of the clock ceases.

Users are warned that the clock will continuously lose time. There is no hard-
ware clock in the sense of seconds, minutes and hours. Computation of clock
time is done from the 25ms interrupt chain in the Model I (in the Model III,
it is done in the ROM from the timer interrupt). Whenever the interrupts are
left off for more than 25ms (33 or 4@ ms on the Model III), one or more inter-—
rupts are lost and for each one lost, the clock loses 25ms (33 or 4P ms on the
Model III). Lost interrupts are very frequent when disk I/0 is being done, is
massive when tape I/0 is done, and can also be frequent if other routines hung
off the 25ms chain are more than a few milliseconds long.

2.13. CLs ' Clear the display.

CLS simply clears the display, reseting it to 64 character mode. On the Model
I1I, reserved top display lines are not cleared.

2.14. COPY

The COPY command is used to copy a single file, multiple files or a full
diskette. COPY has 6 formats:

1. COPY,filespecl{,T0],filespec2|,SPDN=dn3][,DPDN=dn4]

2. COPY,$filespecl[,T0],filespec2[,SPDN=dn3][,DPDN=dn4]

3. corY,[:]dnl,filespecl[,T0],filespec2[,SPDN=dn3][,DPDN=dn4]

4. COPY,[:]dnl,$filespecl[,T0],filespec2[,SPDN=dn3][,DPDN=dn4]

5. COPY,[:]dnl[=tecl][,T0],[:}dn2[=tc2],mm/dd/yy[,Y]1[,N]
[,NDMW][,FMT][,NFMT][,SPDN=dn3][,DPDN=dn4][,SPW=passwordl]
[,NDPW=password3][,DDND][,0DN=namel][,KDN][,KDD]{ ,NDN=name2]
[,SN=name3][,UsD][,BDU][,UBB]

6. .COPY,{:]dnl[,TO],{:}dn2[=tc2],mm/dd/yy,CBF[,Y][,N]
[,USR][,/ext][,UPD][,ILF=filespec3][,XLF=filespec4][,CFWO0]
[,NDMW}[,FMT}[,NFMT][,SPDN=dn3][,DPDN=dn4][,SPW=passwordl]
[,0DPW=password2][,NDPW=password3][,DDND][,0DN=namel]
[,KDN][,KDD][,NDN=name2][,SN=name3][,USD][,UBB]
[,DDSL=1n1][,DDGA=gcl]

The COPY command has been significantly changed in NEWDOS/80 version 2; all
users, new and old, should carefully read this section.

COPY cannot be executed under MINI-DOS; however for simple single file copies,
DOS library command MDCOPY is available.

2-9 DOS LIBRARY COMMANDS

dnl and dn2 are drive numbers and may be equal. The colon preceding dnl an”’or
dn2 is optional.

Filespecl is the source file's filespec. Filespec2 is the destination file's
filespec. '

Filespecl prefixed with $ means that either the source or the destination file
or both are to be on drive @ and are on diskette(s) that either (1) do not

contain a NEWDOS/8f system identical to the one on drive § when COPY was init-—
iated, (2) do not contain a NEWDOS/8p system, or (3) contain no system at all.

During processing for formats 2, 3, 4, 5 and 6, the system may ask for various
diskette mounts; do what the prompts ask!!

' l. When prompted for the system diskette, mount the NEWDOS/8p diskette
that was on drive § at the start of the COPY command execution.

2. When prompted for the source diskette, mount the diskette containing
file filespecl (formats 1, 2, 3 and 4) or the data to be copied (formats 5
and 6).

3. When prompted for the destination diskette, mount the diskette to
contain file filespec2 (formats 1, 2, 3 and 4) or to receive the data
being copied (formats 5 and 6).

SPDN=dn3 Source PDrive Number. SPDN=dn3 tells the system that for all source
drive 1/0, the system diskette's PDRIVE specifications (see DOS command PDRIVE,
section 2.37) for drive dn3 are to be used instead of the source drive's normal
PDRIVE specifications. dn3 is a value § to 9, referring to a drive number
listed by the PDRIVE command.

DPDN=dn4 Destination PDrive Number. DPDN=dn4 tells the system that for all
destination drive I/Os, the system diskette's PDRIVE specifications for drive
dn4 are to be used instead of the destination drive's normal PDRIVE specifica-
tions. dn4 is a value § to 9 referring to a drive number listed by the PDRIVE
command.

Note that use of SPDN and DPDN for a drive @ single drive COPY (formats 4,
5 or 6) means that three different PDRIVE specifications (cne for the sys-
tem diskette, one for the source diskette and one for the destination
diskette) will apply during the COPY even though only one drive is used.

Format 1 is the single file copy. It is used to copy the contents of file
filespecl to file filespec2. The diskette(s) involved in the COPY must already
be mounted; the system gives no mount prompts. The contents of file filespecl
are not altered. The previous contents of file filespec2, if any, are lost.

If the leading part of filespec2 equals that of filespecl, filespec2 may be
shortened by leaving off the leading part, the remainder of filespec2 starting
with / or . or :. For example:

COPY,USERFILE/DAT:#,TO,USERFILE/DAT:1
can be shortened to:

COPY,USERFILE/DAT:#,TO, : 1

DOS LIBRARY COiANDS o=

Remember, the keyword TC is optional, and spaces may be used instead oi ccmmas.
Thus the command could be written:

COPY USERFILE/DAT:§ :1

Format 2 is the same as format 1 except that the $ sign prefixed onto file-
specl indicates that a conflict exists with drive #, the system drive, and DOS
will prompt for the proper diskettes to be mounted on drive §. If the source
and destination drive numbers are both zero but the source and destination
files are on separate diskettes, use format 4 instead of format 2.

Format 3 again is similar to format 1, except that the user has only 1 drive
available for the copy and file filespecl resides on a diskette different from
that of file filespec2. Neither filespec can specify a drive number. DOS will
prompt for the mount of the source and destination diskettes as they are need-
ed. If drive § is specified, both the source and destination diskettes must
contain a NEWDOS/8f system identical to the one mounted on drive § at the start
of the COPY command; otherwise use format 4.

Format 4 performs similar to format 3 except that either file or both reside on
diskettes with different NEWDOS/8@ systems, non-NEWDOS/8f systems or no systems
at all. DOS will prompt for the mount of the system, source and destination
diskettes as they are needed. Format 4 should only be used when dnl equals §;
otherwise you are wasting time with diskette swaps that are not needed.

Formats 2 and 4 allows suppliers of programs, whether free or purchased, to
send their program products on diskettes that do not contain NEWDOS systems.
Aside from the supplier's programs and/or data files, the diskette need only
contain the directory and the BOOT/SYS file, both created on each diskette
during formatting. Suppliers must not include a NEWDOS system on their disk-~
ettes unless they have made explicit arrangements with Apparat.

NEWDOS/8§ does not have a diskette BACKUP program. JTnstead, either formats 5
or 6 is used. Format 5 is a full diskette sector by sector copy without con-
cern for the number and type of files. Format 6 copies some or all of the
source diskette's files onto the destination diskette. Of the two, for the
same amount of data transmitted, format 5 is faster while format 6 allows
greater variation between source and destination diskette types and tries to
reassign files to contiguous space. -

Format 5 is a full diskette copy. The default specifications for the two
drives are the PDRIVE specificatios currently being used by DOS. The drives
must have the same number of sectors per track, granules per lump and sectors
per granule (five is the current NEWDOS/8p standard); otherwise format 6 must
be used. The destination diskette may have more tracks than the source; if so,
the destination directory is adjusted to account for the extra free granules
(not done if BDU option specified). Format 5 options are defined as follows:

=tecl DOS is to use the value tcl as the source diskette's track count
during the COPY rather than the source drive's default value.

=tec2 DOS is to use the value tc2 as the destination diskette's track
count during the COPY rather than the destination drive's default value.

mm/dd/yy is the date to be placed in the destination diskette date

2-11 DOS LIBRARY COMMANDS

\C. V2

field. The mm/dd/yy may be null, and if so the system date is used. The
only time mm/dd/yy may be entirely left out of the format 5 COPY command
is when the command has only the two drive number parameters (example:
COPY # 1). Otherwise mm/dd/yy must be the 3rd parameter even if it is
null or to be overridden by either the KDD or the USD parameter. Tf ti=
um/dd/yy is null, this must be so indicated by separating commas (not
spaces) (example: COPY § 1,,FMT CBF).

Y The user doesn't care what was previously on the destination disk-
ette. Y 1is mutually exclusive with N, ODN, ODPW, DDND, KDN or KDD. Y is
the default (for COPY) if none of its mutual exclusions are specified.

N At the start of the COPY or FORMAT the destination diskette must not
contain recognizable data, i.e., should be in a bulk erase state. COPY
will be terminated if the diskette is found to contain data. N is mutual-
ly exclusive with Y, ODN, ODPW, DDND, KDN or KDD.

NDMW No Diskette Mount Waits. DOS is to assume that all needed disk-—
ettes are already mounted on the specified drives. No mount prompts or
error prompts are displayed. If an error occurs that otherwise would have
caused a prompt, the copy will be terminated. If NDMVW is specified and
neither FMT nor NFMT are specified, FMT is assumed. NDMW is intended for
use when COPY (or FORMAT) is invoked via DOS~CALL (i.e., from BASIC) and
the calling program does not want operator interaction. Since NDMW causes
the COPY or FORMAT to bypass error and disk mount queries, it is recom-
mended that NDMW normally not be used when the operator is keying in the
COPY (or FORMAT) command.

FMT Format. DOS formats the destination diskette before copying data.
FMT 1s mutually exclusive with NFMT. If neither FMT or NFMT is specified
and NDMW was not specified, the operator will be queried 'FORMAT DISKETTE?
(Y OR N)'. 1If neither FMT or NFMT is specifed and NDMW was specified, FMT
is assumed.)

NFMT No Format. DOS does not format the destination diskette before
copying data. The user must assure that the destination diskette is al-
ready formatted correctly. NFMT is mutually exclusive with FMT.

SPW=passwvordl Source PassWord. If passwords are enabled (system op-
tion AA = Y) and system option AR = N, then COPY requires a source disk-
ette master password match. If passwordl does not match the source disk-
ette's password, the copy function will be terminated.

NDPW=password3 New Destination PassWord. Password3 must conform to
rules for passwords and is assigned as the destination diskette's new
password. NDPW is mutually exclusive with BDU.

DDND Display Destination old Name and Date. The destination disk-
ette's old name and date are prompted to the display, allowing the opera-
tor to decide whether or not to proceed with the copy. DDND is mutually
exclusive with Y, N, and NDMW.

ODN=namel 0ld Destination Name. If the destination diskette's old
name is not equal to namel, then the system prompts, allowing the opesrator
to decide whether to proceed with the copy. ODN is mutually exclusive
with Y, N and NDMVW.

DOS LIRBRARY COHMANDS 2-12

CorY

Kpn Keep Destinaticn disketrte Namc. The destination diskette keeps
its old name rather than receive the source diskette's name. KDN 1s nmu-
tually exclusive with Y, N, BDU and NDi.

KDD Keep Destination diskette Date. The destination diskette keeps
its old date rather than receive the mm/dd/yy parameter from the COPY
command. KDD is mutually exclusive with Y, N, BDU and USD.

RDN=name2 New Destination Name. The destination diskette takes namel
as its name, rather than receive the source diskette's name. Name2 must
conform to the specification for diskette names. NDN 1is mutually exclu-
sive with BDU and KDN.

UsD Use Source Date. The destination diskette uses as its date the
source diskette's date, rather than receive the mm/dd/yy parameter from
the COPY command. USD is mutually exclusive with KDD and BDU.

SH=name3 Source diskette Name. If the source diskette's name is not
equal to name3, a prompt is issued, allowing the operator to decide
whether or not to proceed with the copy.

BDU Bypass destination Directory Update. Aside for simply copying
the source sectors onto the destination diskette, the format 5 COPY also
updates the boot and PDRIVE data in the destination file BOOT/SYS and, as
necessary, the name, date, password and extra granule information into
file DIR/SYS. There are times, however, when this file updating is not
wanted, and by specifying option BDU these updates are bypassed. BDU 1is
useful when the source diskette has a bad directory, has a non-standard
directory (such as a TRSDOS Model III directory) or has no directory at
all or when the user wants a full diskette copy with no alterations. BDU
is mutually exclusive with KDN, NDN, NDPW and USD.

UBB Use Big Buffer =~ In NEWDOS/21 and NEWDOS/8Pp version 1, COPY was
restricted to using main memory below 7§ffH unless it was a two diskette,
single drive COPY, in which case all of memory to HIMEM was used. If a
user wanted to force the usage of all memory to HIMEM, the UBB parameter
had to be specified. However, in NEWDOS/8f version 2, all of main memory
. to HIMEM is used unless the COPY was invoked under DOS-CALL (i.e., from
BASIC), in which case only main memory below 79@PH is used. Thus, in
NEWDOS/8@ version 2, UBB is a useless parameter left in existence only for
‘upward compatability from Version 1.

Format 6 is the multiple file COPY and is distinguished from format 5 by the
inclusion of the CBF (Copy By File) option. Though format 5 is the faster way
to backup a diskette, format 6 offers more flexibility, allowing files to be
copied between diskettes and drives of widely varying characteristics. The
choice of files to be copied can be limited by the combined effect of options
USR, /ext, UPD, ILF, XLF and CFWO; if one or more criteria are specified, only
those files satisfying all the criteria are copied. Format 5's options, except
BDU, are used in format 6 as well as the following additional optionms.

If NFMT is specified, then none of Y, N, XDN, KDD, NDN, BDU, USD, NDPW,

DDSL, DDGA or tc2 may be specified, ODPW may be required, and system files
are not copied unless already existent in the destination file directory.

2-13 DOS LIBRARY COMMANDS

Wikl

If NFMT is not specified, then the destination file is formatted as if the
command was FORMAT, including establishing BOOT/SYS and DIR/SYS. Then,
before any files are copied, all files to be copied are entered into the
destination diskette's directory. This is necessary as system files must
occupy the same directory FPDEs in order for DOS to work at all.

CBF Copy By File CBF, required for and used only in format 6, ind-
icates the copy will be done by files rather than in straight sequential
order of diskette sectors.

USR copy user files. Only user files are copied; system and invis-
ible files are excluded.

/ext copy files having name extension ext. Only files with name ex-

tension ext are copied. ext is a § to 3 character name extension.
Fxamples of this parameter are /CMD, /, /BAS, /X.

UPD copy updated files Only files that have the updated flag on in
the source diskettte directory are copied. This flag is turned on by the
standard DOS sector write routine to indicate that at least one sector has
been written or re-written to this file since the last time the updated
flag was cleared. This flag is turned off by specific request via the
PROT or ATTRIB commands and is NOT turned off by COPY. Since the standard
DOS sector write routine is used to write the file's sectors to the des-
tination diskette, the updated flag is turned on for the copied destina-
tion files. ‘

ILF=filespec3 Include List File Filespec3 specifies a file containing
a list of files to be copied. If a file is not in the list, it is not

‘copied. It is not an error if an included file is not on the source disi-

ette. Within the list, each file to copied is specified by its name/ext
followed by a EOL char (#DH). If a specification begins with a semi-
colon, it is bypassed as a comment. Each specification, except comment,
is limited to a maximum of 13 characters, including the EOL. On reading,
the file's bytes are modulated into the ASCII range § to 127. The file
can be made using SCRIPSIT, but the user must assure that no characters
other than null (@PH) follow the last EOL character; SCRIPSIT tends to
leave extraneous characters so a delete~to-end—-of-text should be done.
ILF is mutually exclusive with XLF.

=filespecé Exclusion List File. The file filespec4 is the same
structure as specified for ILF above and specifies the files to be ex-—
cluded from the COPY. It is not an error if an excluded file is not on
the source diskette. XLF is mutually exclusive with ILF.

CFYO Check File With Operator. For the qualifying files, DOS asks the
operator, one file at a time, if the file is to be copied to the destina-
tion diskette. Reply Y if the file is to be copied, reply N if not to be
copied, reply R if to restart entire CFWO query sequence, or reply Q if no
more files to be copied. No files are copied until the querying is com—
pleted.

ODPW=password2 Old Destination diskette Password. Tf NFMT is speci-
fied, if passwords are enabled and if system option AR = N, then copy re-
quires a destination diskette password match. TJf password2 does not match

DOS LIERARY COMMANDS 2-14

the destination diskette's password, the copyv is terminated.

DDSL=1nl Destination diskette Directory Starting Lump. Formatting will
start the directory on the lst sector of lump Inl if DDSL is specified;
otherwise the default starting lump number for the drive (see PDRIVE com—
mand) will be used. DDSL is mutually exclusive with NFMT.

DDGA=gcl Destination diskette Directory Granule Allocation. Formatting
will allocate gecl (value 2 - 6) granules to the directory if DDGA is
specified; otherwise it will assign the default # of granules for that

drive (see PDRIVE command). DDGA is putually exclusive with NFMT.

If during a format 6 COPY, the destinmation diskette has insufficient space to
contain a file, “DISKETTE FULL = name/ext" is displayed and the destination
file's EOF is set to §. Though EOF is set to §, any space the file may have
allocated to it is not deallocated.

A single drive format 5 or 6 COPY cannot be executed under DOS—-CALL (i.e., from
BASIC) since COPY under DOS-CALL restricts itself to main memory below 7PPPH
and this would necessitate too many diskette swaps.

During a COPY or FORMAT where NDMW was not specified, pressing right arrow at
any time will cause the function to pause, awaiting ENTER to continue or up-
arrow to cancel. Pressing up—arrow at any time will terminate the function;
however, be careful as the state of the destination diskette will be unknown,

especially if the cancel comes during the actual formatting.

‘The COPY command and standard 4@ track, double density, single sided, 5 inch
TRSDOS Model III diskettes may be used to transfer TRSDOS Model III diskette
files into or out of the NEWDOS/ 8§ system. There are a number of restrictions
to this operation.

NEWDOS/8f cannot be used to format a TRSDOS Model III diskette; however,
once the user has a formatted empty TRSDOS Model III diskette, he/she may
duplicate it repeatedly under NEWDOS/8g using format 5 COPY with the NFMT
and BDU options, thus obtaining a stock of formatted, empty TRSDOS Model
III diskettes.

The user must assure that where the source and/or destination is a TRSDOS
Model III diskette the proper PDRIVE specs are invoked, either implicity

or directly by the SPDN and/or DPDN parameter (see PDRIVE command example
3, section 2.37 for the exact PDRIVE specification).

A file need not Previously exist on a TRSDOS Model ITI diskette in order
for it to be copied. NEWDOS/8f will allocate the proper directory entry
and diskette space. : '

Any of COPY formats 1, 2, 3, 4 or § may be used to copy files to or from
TRSDOS Model III diskettes. Remember, FMT must not be specified. If
format 6 is used and one of the source or destination is a TRSDOS Model
I1I diskette, then files marked as SYSTEM files (FPDE lst byte, bit 6 = 1)
are NOT copied.

Files copied between NEWDOS/8f and TRSDOS Model III are always readable
though not necessarily usable on the receiving system.

2-15 DOS LIBRARY COMMANDS

COPY

Examples of COPY:

1. COPY XXX:1 YYY:l In this format 1 COPY, file XXX on the
diskette already mounted on drive one is copied as file YYY on that same
diskette.

2. COPY,AAA,BBB:2 In this format 1 COPY, the currently
mounted diskettes are searched for the file AAA. If found, it is copied
as file BBB to the diskette already mounted in drive 2.

3. COPY SUPERZAP/CMD:9§ :3 In this format 1 COPY, the file
namedSUPERZAP/CMD is copied from diskette already mounted in drive § to
the diskette already mounted in drive 3. Since the file name and name
exten— sion are the same for both files, they were dropped from the second
file—~ spec,

L, COPY XXX:1 2 SPDN=9 In this format 1 COPY, SPDN=9 causes, for
the duration of the COPY only, all source file I/0 to assume that drive 1
has the characteristics specified for drive 9 in the PDRIVE specifica-
tions. ' If we assume that the PDRIVE drive 9 specifications were those for
a Model III TRSDOS diskette (see PDRIVE example 3, section 2.37), this
COPY will copy file XXX from the TRSDOS Model III diskette already mounted
on drive 1 to the NEWDOS/8f diskette already mounted on drive 2.

5. COPY $XXX:1,YYY:9 In this format 2 COPY, the destination
diskette to contain file YYY is not the same diskette as was mounted on
drive §§ when the COPY command was initiated. DOS will ask for the mount
of the destination and the system diskettes as it needs them.

6. COPY,$XXX:94 YYY:1 In this format 2 COPY, the source diskette
containing file XXX is not the same diskette as was mounted on drive §
when the COPY command was initiated. DOS will ask for the mount of the
source and system diskettes as it needs them.

7. COPY 1 XXX YYY/DAT ' In this format 3 COPY, the diskette con-
taining file XXX is not the same diskette as the one to contain file
YYY/DAT yet both the source and destination diskettes are to use drive 1.
DOS will ask for the mount of the source and destination diskettes as it
needs them. Note that, as required for format 3 and 4, neither filespec
contains a drive number.

8. COPY § XXX/DAT /DAT In this format 3 COPY, file XXX/DAT on one
diskette is to be copied as file XXX/DAT on another. Both diskettes are
to be mounted on drive f, and DOS will ask for them as needed. Since
drive § is used and this is format 3 rather than format 4, both the source
and destination diskettes must contain NEWDOS/8f systems identical to that
mounted on drive # when the COPY command was initiated.

9. COPY § $XXX/DAT /DAT This format 4 COPY accomplishes essenti-
ally the same thing as the previous example. The difference is that DOS
assumes that neither the source nor the destination diskette contains the
proper NEWDOS/8f system; so DOS will ask for the mount of the system,
source and destination diskettes as it needs them.

DOS LIBXARY COMMANDS Z-1é

CoOrY

1¢. COPY § $XXX XXX SPDN=9 This tormat < COTY accomplishes the same
thing as in example &4 above excepting siiat only drive § is used. For the
duration of this COPY, drive § uses two sets of PDRIVE specifications.

The standard drive § specifications are used for the system and destina-—
tion diskette I/Os, and the system diskette's PDRIVE's drive 9 specifica-
tions are used for the source diskette 1/0s. Note, in this example, the
second filespec was not foreshortened as there was nothing to foreshorten.

11. COPY p 1 p6/p1/8p FMT This format 5 COPY is an example of ome of
the simplest and most commonly used forms of the full diskette COPY. This
COPY copies one diskette to another using drive § as the source drive and
drive 1 as the destination drive. Default track counts for the associated
drives are used as diskette track counts. Both drives, other than pos-—
sibly having different track counts (destination must be greater than or
equal to source), have the same characteristics. The operator will be
prompted for diskette mounts and erroT choices, if errors occur. Default
parameter Y is in effect, indicating the operator does not care if the
destination diskette previously contained data or not. The destination
diskette will be formatted before the entire source diskette is copied to
it, and it will receive the source diskette's name and password. Its date
will be set to P§6/p1/8p. If the destination diskette is to have more
tracks than the source, they will be formated and properly accounted for
in the directory such that the destination diskette will be ready for use.

12. COPY ¢ 1,,NFMT This format & COPY is an example of an-
other form of the simplest and most common full diskette copy. The only
difference between this example and the one above is (1) the destination
diskette is assumed already formatted, and (2) the current system date
will become the destination diskette's date.

13. COPY,p,p,p6/p1/8p ,NFMT,USD,KDN, ODN=WATCHDOG, SN=GOODDATA

This format 5 COPY is somewhat the same as the previous example except (1)
this is a single drive, two diskette copy, (2) a prompt will be given if
the source diskette does not have the name specified, (3) a prompt will be
given if the destination diskette does not have the name specified, (4)
the destination diskette will retain its old name, (5) it will receive 1its
date from the source diskette. Being a single drive, two diskette cOPY,
more mount prompts will be necessary than for a two drive COPY. Also,
because of the large number of diskette mounts that would be involved,
this single drive COPY cannot be executed via DOS-CALL (i.e., from BASIC).

14, COPY $,1,,FMT,CBF This format 6 COPY is an example of ome of
the simplest and most commonly used forms of multiple file COPY. The
destination diskette (to be mounted on drive 1) is to be formatted, and it
receives its name and password from the source diskette (to be mounted on
drive #) and its date from the system date. Next, all of the source
diskette's files, excepting BOOT/SYS and DIR/SYS, are copied to the des-—
tination diskette.

15. COPY §,1,,NFMT,CBF This format 6 COPY is an example of another
of the simplest and mostly commonly used forms of multiple file COPY. The
differences between this and example 14 are (1) the destination diskette
is not to be formatted, (2) its name, password and date are not changed,
and (3) any source diskette system files (other than BOOT and DIR) that

. did not already exist on the destination diskette are not copied.

2-17 DOS LIBRARY COMMANDS

VAL L T OLKDALDL

16. (CoOPY 9 1,,NFMT,CBF, USR This format 6 COPY is similar to the pre-
‘Vious example except that system and invisible files are not copied.

17. copvy,9,1,,NFMT,CBF,USR, UPD This format 6 COPY is similar to
theprevious example except that the only source files copied are those
marked as updated as well as not being either a system or an invisible

- file. In this manner, only the files changed since the last backup are
backed up now. Remember, COPY does not clear the updated flags on the
source disk- ette; use DOS commands- PROT or ATTRIB to do this.

18. COPY,2,3=6§,86/91/8p,FNT,NDMW, CBF,DDSL=29, DDGA=4

During this format 6 COPY no diskette mount prompts or error choices arw

to be displayed; the system is to assume the diskettes are already pro-

perly mounted. The destination diskette is to be formatted with 69

tracks. Theé directory will start on lump 29, and will be allocated &

granules. All source diskette files, except BOOT/SYS and DIR/SYS, will be
~ copied to the destination diskette.

19. COPY 2 3 p6/91/8@,CBF, CFWO,NFMT

" For this format 6 COPY, the destination diskette is assumed previously
‘properly formatted and may contain existing files. For each source disk-
ette file, excluding BOOT/SYS and DIR/SYS, the operator will be asked if
the file is to be copied to the destination diskette. When all queries
are done, the selected files are copied, excepting that system files that
did not previously exist on the destination diskette are not copied. If
the file already existed on the destination diskette, the file's old data
on the destination diskette is lost.

2.15. CREATE Pre-allocate a disk file.

The CREATE command allows a user to create a file and optionally to write to
the file a specified number of null records, thereby allocating the file's
space as contiguously as possible, given the layout of the free space on the
diskette.

There are times when a user program expects one or more of the files it uses :o
already exist, even though the files may not have any usable data in then;
therefore, the user must create the file prior to the program's first use.
Also, there are times when the efficiency of a program is reduced if a file's
diskette space is scattered all over the diskette; to avoid this, the user
should preallocate the needed file space to reduce this scattering.

CREATE,filespecl[,LRL=1nl][,REC=countl][,ASE=yn]{,ASC=yn}

The CREATE DOS command creates new file filespecl or alters the state of
existing file filespecl.

LRL=1nl specifies the length of each record of the file. 1lal must be a value
between 1 and 256; the default value is 256.

BEC=countl specifies the number of records to be initially :ssigned to a file.

DOS LIBRARY COMMANDS =18

CREATE - DATE

ASE=yn This parameter indicates whether, subtecvont to the CREATE command,
DO5S way automatically allocate more diskette space to this file as necessary.
ASE=Y allows this; ASE=N disallows this. The default is ASE=Y,

ASC=yn This parameter indicates whether the DOS close function will be al-
lowed to automatically deallocate excess diskette space. ASC=Y allows this;
ASC=N disallows it. The default is ASC=Y.

Fnough diskette space is allocated to the file to provide for countl records
each of length 1nl. 1nl records of all zeroes are then written to the file,
establishing the file EOF at the end of those records. J£ ASE=N is specified,
the file is inhibited against further diskette space allocation, and if ASC=N
the file is inhibited against automatic deallocation of excess diskette space.

CREATE command examples:

1. CREATE,XXX:1,LRL=3§,REC=20p9 File XXX is created, if it did not
already exist, on the drive 1 diskette. The record length is 39 and 2ppP

- of these records, containing all #@H bytes, are written to the file. The
EOF is left at 64fPP. Subsequent DOS automatic space allocation and deal-
location for this file are allowed.

2. CREATE,YYY:2,2pf,ASE=N, ASC=N File YYY is created, if it did not
already exist, on the drive 2 diskette. The record length is 256 and 20¢
of these records, containing all @#fH bytes, are written to the file. The
EOF is left at 512@p. Subsequent DOS automatic space allocation and deal-
location for this file are not allowed.

3. CREATE,ZZZ:§ File 2ZZ is created, if it did not
already exist, on the drive § diskette. The record length is 256, and the
EOF is set to f. Subsequent DOS automatic space allocation and dealloca-
tion for this file are allowed.

2.16. DATE Set computer's current date.
DATE[,mm/dd/yy]

1f no parameters are specified, the DATE command displays the current system
date in mm/dd/yy format.

If mm/dd/yy is specified, the date mm/dd/yy becomes the system date and is set
into the real time clock. omm is the month (value #1 - 12). dd is the day
(value §1 - 31). yy is the year (value #f - 99). No check is made on the
validity of the 3 values except to limit them to 2 decimal digits. As the
clock reaches 24:Pfp:fP, it is reset to PP:PP:PP and the date's day within month
value is incremented. For the Model I, no adjustment is made for end of month
or end of year. For the Model III, end of month and end of year adjustments
are done by the ROM.

. At reset time, the date is set according to SYSTEM options AY or AZ.

2-19 DOS LIBRARY COMMANDS

DATE - DEBUG - DIR

DATE command examples:

1. DATE display the system date.
2. DATE,($8/91/81 set system date to August 1, 1981.
2.17. DEBUG enable or disable the DEBUG facility.

DEBUG[,yn]
DEBUG or DEBUG,Y DEBUG is enabled (but not entered). This enabling
causes a DEBUG entry whenever a user program (such as BASIC, SCRIPSIT, PROFILE,
EDIT, etc.) is activated. The DEBUG entry occurs after the program load is

completed but just before its first instruction is executed. The purpose of
this pre-execution DEBUG entry is to allow the debugging programmer to change

commences execution.

DEBUG,N The above enabling is disabled. At reset/power-on time, DEBUG
1s disabled. .

This command has no effect on the operation of '123' (the simultaneous depress-
ing of the 1, 2 and 3 keys) to enter the DEBUG facility.

Refer to the section 4.1 for the DEBUG facility specifications.

2.18. DIR Display a diskette's diréctory informaticn.
DIR[:][dnl]{:A]I:S]{sI]{sU]{:/SXtI{,P]

This command displays directory information for the diskette mounted on drive
dnl or if dnl not specified, on the drive specified by system option AN.

The first display. line contains the drive number, the diskette name, its date,

the number of tracks, the number of free FDEs and the number of free granules.
The values for track count and free granules are based on the current active

The rest of the display contains file information.

Tf A is not specified, the files are displayed four to a line, giving for each
its name and name extension, if any.

If A is specified, DIR will list one file per display line with the display
line containing: '

1. The file's nanme.
2. The file's nane extencsion, 1if any.

DOS LIBRARY COMANDS 2.1

DIl

3. The file's EOF value in *xx/yyy format where xxx is the relative
sector number within the filc and ¥y¥y 1s the relative bvte number within
that sector.

4. The file's logical record size (LRL) in bytes.

5. The number of logical records (RECS) in the file including any partial
last record.

6. The number of granules (GRANS) allocated to the file.

7. the number of diskette space extents (EXT) allocated where that number
divided by four and rounded up gives the number of directory entries used
by the file.

8. 12 flags providing file information, defined as follows:

1. S = system file.
2. I = invisible file, see ATTRIB DOS command.
3. U = file updated since last time update flags cleared by PROT

DOS command.

4. E = file will not be allowed to allocate more space that it
already has.

5. C = excess file space beyond EOF is not automatically released
during DOS close.

6. - 9. Reserved for future definition.

1. U = non-blank update password exists.
11. A = npon-blank access password exists.
12. L = protection Level, see ATTRIB DOS command.

System files are not displayed unless S is specified.
Invisble files are not displayed unless I is specified.

1f U is specified, only files marked as updated are displayed. Files marked as
updated are those files changed via the standard DOS I/0 write routine since
the last time the update flags were cleared on the target diskette by the PROT
or ATTRIB DOS command.

If /ext is specified, only those files having the name extension ext are _
displayed. ext is § to 3 characters. Example: DIR,1,/CMD will list all
files having extension CMD such as EDTASM/CMD.

If both U and /ext are specified, then only files satisfying both conditions
are listed.

When the display screem is full, DIR displays a '?' and waits for the user to
respond ENTER to continue or BREAK to terminate the DIR function.

If P is specified, the directory information is sent to the printer rather than
to the display. Caution, if the printer is not ready, the system will hang
waiting for it. '

If § is specified, DIR will ask for the mount of the target diskette before the
listing and will ask for the remount of the system diskette before exiting. §
should only be used when drive dnl = #. There is no provision for changing the
PDRIVE specifications internal to the DIR command.

2-21 DOS LIBRARY COMMANDS

—— LYV IO VY

The user must remember that if dnl is not specified, the default drive number
is that specified by SYSTEM option AN which is not necessarily f.

DIR command examples:

1. DIR 8 Display the name and name extension of all non-
system, non-invisible files on the diskette currently mounted in drive §.
The files will be listed four per display line.

2. DIR ¢,5,1,P Same as the previous example except that system and
invisible files are also listed and that the listing is sent to the print-
er instead of the display.

3. DIR 1,/DAT,U Display the name and name extension of all of the
current drive 1 files that are marked as updated and have name extension
DAT,

4, DIR 2,A All of drive 2's non-system, non-invisible files are

displayed, one file per display lime. This display will usually involve
more than one display page with the user stepping from one page to the
next by pressing ENTER and, if desired, terminating the DIR function by

pressing BREAK.

5. DIR $§ Same as example 1 except the system will ask for the
mount of the target diskette on drive § and when DIR is done, it will ask
for the remount of the system diskette.

2.19 DO Shift to keyboard input from disk.
DO, filespecl[,sectionid]

The DO command executes exactly the same as the DOS command CHAIN (see section
2-9)0

2.2) DUMP . Dump memory contents to disk.
DUMP,filespecl,start—addr,end—addr[,entry—addr[,relloc—addr]}

The DUMP command writes main memory image data from main memory to the file
filespecl, starting with the byte at start—addr and ending with the byte at

end-sddr.

Start-addr, end-addr, entry-addr and relloc-addr are each numeric values less
than 65536 decimal or 1PPPP hex. If the value is hexadecimal it must be suf-
fixed with a H (i.e. 8@PPH); otherwise the value is considered decimal.
Start-addr and relloc-addr may be any value § - PFFFFH.

This command operates in two nodes, depending on the entry-addr value. Tf the
entry-addr value = 65535 (PFFFFH), then an cxact image of meniory 1s dunped.

DOS LIBRARY COMMANDS 2-22

DUMp

The start-addr value is stored in the file's first 2 bytes, and the rect of the
file is the memory dump without any interspersed control bytes. This mem Ty
dump file may be displayed or printed via SUPERZATF's DMDB feature, thus zllow-

ing debugging to occur later or on another TRS-8f computer.

If entry-addr is less than 65535 (HFFFFH) or is not specified, then the speci-
fied area of memory is assumed to be machine executable code and is sent to the
file in loader format so that it can be later read back in by the NEWDOS/8&9
loader, either for execution or simply for load (see LOAD command). If entry-
addr is not specified, a value of 4§ 2DH (causing return to DOS READY) is used.
CAUTION!! 1If the user attempts to run or load a file whose start-addr is less
than 52#PH, DOS will be clobbered.

relloc—addr specifies where the start-addr to end-addr range of bytes is to be
loaded to by the LOAD command or when the program file is executed. During
write of the object file, the value (relloc-addr) - (start-addr) is added to
every load address placed in the object file. This value is also added to the
entry-addr if entry~addr is within the start-addr to end-addr range. The
actual object code is NOT altered; only the loader control information is.

If filespecl does not specify an name extension, one is not automatically sup-
plied as is dome in TRSDOS.

DUMP command examples:

1.. DUMP, PROGRAM/CMD:1,52¢0H, 9ABCH, 54EDH dumps the contents of memory
from and including 52PfH to and including 9ABCH to the file PROGRAM/CMD to
exist on drive 1's current diskette. The dump will be in loader format
with entry address equal to S4EDH. Subsequently, the file may be loaded
back into memory via the DOS command:

LOAD, PROGRAM/ CMD
or executed via DOS command:
PROCRAM(;Parameters]

2. For this next example, assume that a user program is looping for some
reason or has crashed, the personnel .to debug the problem are not immedi-
ately available, and it is necessary to continue using the computer for
other purposes. If a spare formatted diskette is available with suffi-
cient free space, and if 'DFG' can activate MINI-DOS or if the computer is
already at DOS READY, then issue the following command:

DUMP, TROUBLE/MEM: 2, 8,65535 65535

which will dump 65536 bytes of main memory, including ROM, the display,
and all of RAM to file TROUBLE/MEM. The first 2 bytes of the file will
‘contain #PPPH which is the dump start address; the rest of the file is the
memory contents with no interspersed control characters. Once the dump is
completed, the operator should set aside the dump diskette for later use
by the debugging persomnel, optionally press reset, and go on with other
tasks. At some later time, debugging personnel can inspect the problem
using SUPERZAP's DMDB feature to display or print the contents of file
TROUBLE/MEM as if it were actually in memory at the current time. The

2-23 DOS LIBRARY COMMANDS

DUMP - ERROR — FORMAT

debugger must remember that the DOS areas 4LPPPH - S1FFH were altered by
DOS actions, including DUMP, after the error occured and before the dump
actually occurred.

2.21. ERROR Display DOS error message.
FRROR, xx

displays the DOS error msg associated with the error number xx where xx is an
integer between § and 63. Fxample:

ERROR, 24 will display 'FILE NOT IN DIRECTORY'.

2.22 FORMAT Format a diskette for use with the NEWDOS/ 89 system.

Diskettes as they are received from the manufacturer cannot be used with
NEWDOS/8f. They must first be magnetically divided into tracks with each track
divided into sectors of 256 bytes each. Between 15 and 3¢ percent of the disk-
ette's bytes are used as format control information and are not available to
contain user data.

The DOS command FORMAT does this diskette formatting, setting up the tracks and
sectors properly and building the two system files, BOOT/SYS and DIR/SYS, re-
quired on every diskette. When done, the diskette is ready to be used as a
data diskette with NEWDOS/8@.

Formatting can also be done as part of the COPY command, formats 5 and 6 (see
section 2.14).

FORNAT,dn2[=tc2],name2,mm/dd/yy,passwordB[,N][,Y][,NDMW]
[,DDND][,0DN=namel]{ ,KDN][,DDSL=1nl][,DDGA=gcl 1[,DPDN=dn4]
[,PFST=tn3[,PFTC=tc3]]

FORMAT cannot be executed under MINI-DOS.

In NEWDOS/89 version 2, a track's sectors are read immediately after the track
is formatted and before the disk arm 1is stepped to the next track. Then, after
all tracks are formatted, if SYSTEM option BM = Y, the entire diskette 1is read
during the VERIFYING phase. However, if BM=N, this verifying phase 1is skipped.
The user can decide whether or not the verify—at-track format 1is sufficient and

set option BM accordingly.

FORMAT does not allow the user to specify tracks to be locked out, and when an
unverifiable sector is encountered, the associated track's lockout byte is not
set to FF to indicate lockout. The lockout table is in the standard diskette
directory only for compatibility with TRSDOS; NEWDOS/8¢ does not use it. Re-
member, NEWDOS/Ef does not account for tracks in the directory, it accounts for
lumps which can span tracks. NEWDOS/E@ cperates under the philosophy, however
wrong, that if a diskette cannot be fully formatted it chould be discarded.

DOS LIBRARY COMMANDS z

FOEHAT

FORMAT requires all parameterc be specified in the command. Tt does not prompt
the user for any.

dn2 is the number of the destination drive to be used during format. NameZ is
the name to be assigned to the diskette unless KDN is specified to retain the
old name, in which case name2 must still be specified but will be ignored.
mm/dd/yy is the date to be assigned to the diskette unless KDD is specified as
the diskette date, in which case mm/dd/yy must still be specified but will be
ignored. Password3 is the password to be assigned to the diskette. Password3
must conform to the rules for passwords.

Null parameters may be used to invoke default values for diskette name, date
and password, using the name NOTNAMED, the system date and the password
PASSWORD respectively. Any combination of the 3 null values may be used but
where used the null parameters must be delimited by commas, not spaces. See
examples 2, 3 and 4 below.

Since FORMAT and COPY share the same NEWDOS/8P code wherever possible, the
specifications for the optional parameters are nearly the same as those spec-
ified for COPY, formats 5 and 6, the main difference being that only a format
is done rather than both a format and a copy. The reader should read the sec-
tions for COPY, formats 5 and 6 (see section 2.14) to basically understand
FORMAT's optional parameters. Only the differences and two additional options
will be given here. :

N is the default if neither it nor any of its mutually exclusive keywords are
specified.

If =tc2 specified, the diskette will be formatted with tec2 number of tracks;
otherwise the diskette will be formatted with the default number of tracks for
that drive (see PDRIVE command). If =tc2 value is greater than the number of
tracks the drive can handle, format will probably hang trying to step to the
non—existent track.

PFST=tn3 and PFIC=tc3 optional parameters are added to allow the formatting of
a range of tracks rather than the entire diskette. If PFST is specified, =tc2
must not be specified, and if PFTC is specified, PFST must be specified. PFST
means Partial Format Starting Track, and tn3 specifies the first track to for-
mat. If PDRIVE TI flags J or K are applicable for drive dnl, DOS will add one
to tn3. PFTC means Partial Format Track Count, and tc3 specifies the number of
consecutive ascendingly numbered tracks to format. If PFTC is not specified
and PFST is specified, tc3 is assumed equal to 1. After tc3 number of tracks
have been formatted and if SYSTEM option BM = Y, the entire diskette will be
verified. If this full diskette verify is a problem, cancel the format after
verify starts (by pressing up~arrow); remember, each track's sectors were al-
ready verified once immediately after the track was formatted.

FORMAT command examples:

1. FORMAT,@,AAAP,p$8/P1/81,PSWD,Y The diskette to be mounted, at
DOS's request, on drive # will be formatted according to the PDRIVE spec-—
ifications current for that drive. DOS does not care whether the format
diskette previously contained data or not. The diskette is named AAAQ,
dated August 1, 1981, and receives PSWD as its master password.

2-25 - DOS LIBRARY COMMANDS

FOBRMAT — FORMS

2. FORMAT,®%,,,,Y This example is identical to the previous example
except that default values are used for the diskette name, date and pass-—
word. The diskette is named NOTNAMED, is dated with the current system
date and is assigned PASSWORD as its password.

3. FORMAT,1,XXX,,PSWD,N,NDMW,DPDN=4,DDSL=48 ,DDGA=6 The diskette al-
ready mounted on drive 1 must not contain recognizable data. Tt is for-
matted according to the system diskette's PDRIVE drive 4 specifications
(and not according to the existing drive 1 specifications). Tt is as-
signed name XXX and password PSWD; its date is taken from the current

system date. The directory starts at the beginning of lump 4§ and con-
sists of 6 granules (allows for a maximum of 222 files). Due to NDMW, DOS
does not ask for the mount of the format diskette nor does it allow error

retry.

4. FORMAT,1,,,,Y,PFST=22,PFTC=2 Suppose a power failure destroyed
the format of tracks 22 and 23 on a diskette. Using SUPERZAP, you have
verified that indeed SECTOR NOT FOUND error occurs on at least one sector
on each of those tracks and, using the CDS or SCOPY functions of SUPERZAP,
you have saved in free sectors elsewhere, either on this diskette or an-
other, the readable sectors of those two tracks. Executing this FORMAT
command will cause only those two tracks to be reformatted; the rest of
the information on the diskette is not affected. When done, you can now
move back the saved sectors and recreate the ones that were not savable.

2.23, FORMS (Model III only) Set printer parameters.
FORMS [, WIDTH=xxx][,LINES=yyy]

The FORMS command optionally changes some printer parameters and always lists
out the printer parameters.

WIDTH=xxx specifies the number of characters per line where xxx must be a
value between 9 and 255. If WIDTH is not specified, the number of characters

per line is not changed.
LINES=xxx specifies the number of lines per page, and must be a value between

1 and 254, where 254 indicates no limit on the lines per page. If LINES is not
specified, the lines per page value is not changed.

FORMS command examples:

1. FORMS,WIDTH=8¢,LINES=6¢ character per line is set to 8§ and lines
per page to 6f.

2. FORMS,WIDTH=255,LINES=254 Unlimited characters per line and lines
per page.

3. FORMS Displays current values for characters
per line and lines per page.

DOS LIBRARY COMMALDS 16

FREE - HIMKED - JITL

2.24, FREE Display number of free granules anc free FDEs for each
diskette currently mounted.

FREE[,P]

For each drive with a diskette mounted, FREE will display the drive number, the
diskette name, the diskette date, the number of tracks for the diskette, the
number of free FDEs and the number of free granules.

If P is specified, the information will be sent to the printer instead of the
display.

FREE command examples:

1 FREE For each diskette currently mount the number of free

-

granules and free directory entries is listed on the display.

2. FREE,P ‘ Same as above except the listing is sent to the printer.
2.25. @ HIMEM Set DOS's high memory value.
HIMEM[,addrl]

DOS maintains a high memory address in the two bytes at Model I location 4P49H
(Model III location 4411H). This high memory value is used by COPY, BASIC,
EDTASM, DISASSEM and LMOFFSET as the upper limit of the memory they can use.
User programs should also use this 2 byte HIMEM value as their upper limits.
Caution! The loader does not use HIMEM as its upper limit during program load.

If no parameters are specified, the HIMEM ébmmand displays in hexadecimal the
current high memory value.

If addrl is specified, the DOS high memory address is set to addrl which must
be an integer between 28672 and 65535 decimal (79PPpH - PFFFFH hexadecimal).

HIMEM command examples:

1. HIMEM Displays the current DOS high memory address.

2. HIMEM,49999 ‘ Set DOS's high memory value to 49¢pp (PBF68H).
2.26. JKL Send the current contents of the display to the printer.

JRL has no parameters. This command uses the same routine used by the 'JKL®
triple key function (see section 4.5). JKL simply dumps the display contents
to the printer. If system option AK=Y, hex codes >= 8pH (which includes the
graphics) will be transmitted unchanged; otherwise a period will be substituted
for them. Hex codes < 2fH will be displayed as periods. Pressing BREAK during
JKL print will terminate the JKL function.

2-27 DOS LIBRARY COMMANDS

JKL's main use will be either via CMD"JKL" from BASIC or via DOS~CALL from a
user program.

2.27. XILL delete a file.

This command deletes a file from a diskette. The file is no longer accessible
by normal methods and is no longer known to DOS.

KILL,filespecl

The file filespecl is deleted from the current diskette mounted on the speci-
fied drive. If a drive number was not specified, then all mounted diskettes
are searched, starting with the diskette on drive #, and the delete is done on
the 1st file found having the specified name and name extension.

KILL action is as follows:

1. If the file was allocated file space on the diskette, the space is
released, and becomes available for subsequent assignment to other files.
The file's data, if any, on the diskette is not altered by the KILL. This
data, though no longer accessible, is not written over until the assoc-—
iated file space is reassigned to another file and those sectors actually
written to. :

2. The file's FPDE and any owned FXDEs are freed by zeroing bit 4 of the
lst byte of each and by zeroing the associated HIT sector byte for each.
Fxcept for that bit 4, none of the associated FPDE and FXDEs are altered
by normal DOS operation until that FDE is reassigned to another file by
DOS.

If the user has inadvertently killed a file that shouldn't have been, since
neither the associated FDE's or the diskette space used by the file is changed
by DOS until DOS has a need to, it is barely possible to reconstruct the FPDE
and FXDEs and reallocate the space. To do this, you must be extremely familiar
with the workings of the directories; do not call Apparat as this is a major
undertaking and not something that can be quickly taught. If you don't know

how to do it, forget itlil!llll!

If you have more than a few files to delete at one time from a diskette, use
the PURGE command.

KILL command examples:

1. KILL XXX/BAS:1 The file XXX/BAS on the diskette mounted on drive
1 is killed.

2. XILL YYY Starting with drive #, mounted diskettes are
searched until file YYY is found on one of them. That file is then
killed. 1If other mounted diskettes also contain a YYY file, the other YVYY
files are not killed.

DOS LIBRARY COMMANDS 2-2%

LC - LCDve

1.28 LC ' Set keyboard a - z toggle switch to the specified state.
LC{,yn]
LC or LC,Y sets the keyboard lower case a - z toggle switch to accept

a - z without change.

LC,N sets the keyboard lower case a - z toggle switch to change lower
case a - z to upper case A ~ Z. g

For the Model I, the LC command has no effect unless the lower case driver is
active (see LCDVR command).

2.29. LCDVR (Model I only) Lower case driver.
LCDVR[,x[,s]]

In NEWDOS/8¢ version 1, the lower case driver that processed keyboard lower
case alphabetics and which sent lower case displayed characters to the display
was a separate program that executed from high memory. In version 2, the lower
case driver is an integral part of the Model I REWDOS/ 8p.

If x =Y, the lower case driver routine is activated, and if x = N, the routine
is deactivated. When the lower case driver routine is active:

1. Keyboard input a - z characters are processed according to the a - z
toggle switch.

2. ASCII codes 96 - 127 (6fH - 7FH) are displayed as their proper charac- -
ters and are not changed to 64 - 95 (4PH ~ SFH) by the ROM display routine.

The second parameter is meaningful only when x = Y, performs the same as the
first parameter of LC command, initially setting the a - z toggle switch to
accept a -~ z (if 5 = Y) or convert a — z to A - Z (if s = N).

Once the lower case driver is activated, pressing shift § will switch the dri-
ver back and forth between accepting lower case letters and converting lower
case letters to upper case. Further, DOS command LC may be used to explicitly
set one or the other of those states.

To use the lower case driver, NEWDOS/8¢'s keyboard and display intercept
routines must be enabled. Other routines (excluding ROUTE) that disable these

NEWDOS/8@ functions will also disable.the lower case driver (one example is
using the circular buffer in the spooler). ’ ’

If no parameters are specified, the command is assumed to be LCDVR,Y,N.

This lower case driver operates somewhat differently than the LCDVR program
supplied with Version 1. In Version 1, if lower case a - z was being converted
to upper case A - Z, then upper case A - Z was also being converted to lower
case a — z. Version 2 does not convert upper case A - Z to lower case a - z;
instead a true «capital letter lock is done. ' '

) t

2-29 DOS LIBRARY COMMANDS

LCDVR command examples:

1. LCDVR The lower case driver routine 1s activated and the
. lower case switch 1is set to convert lower case a — z to upper case & - .
2. 1CDVR,Y,Y The lower case driver routine is activated, and the
lower case switch is set to accept lower case a — z without modification.
3. ILCDVR,N The lower case driver routine 1s deactivated.
2.3p. LIB Display NEWDOS/8f library commands.

LIB requires no parameters. Jt displays the library commands of NEWDOS/8@.
Commands FORMAT, COPY and APPEND execute in memory 52ffH and up, and, along
with CHAIN, cannot be executed in MINI-DCS. The other commands execute from
the DOS overlay area, 4DPPH-51FFH, and, except for CHAIN, can be executed under
MINI-DOS.

2.31. LIST List a text file on the display.
LIST,filéspecl[,start-line[,line—count]]

This command sends the contents of file filespecl to the display. Though file
filespecl need not be a text file, if it is not, the resulting diplay will not
be very meaningful. Examples of text files are BASIC programs saved with the A
option, BASIC files written using PRINT, assembler, FORTRAN and COBOL source
text files, SCRIPSIT files saved with the A option and Electric Pencil files.
To list a non-text file, use SUPERZAP.

No check is made on the character representations except to modulate characters
whose hexadecimal values are between 8fE and FFH into the range PPH to 7FH and
to replace with a period all characters whose hexadecimal value is less than
20K or greater than the high ASCII character value specified by the SYSTEM op-
tion AX.

TJf start-line (decimal value 1 - 65535) is specified, listing will start with
that line where a line is considered to end with the ENTER or EOL character
QTH.

If line—count is specified, then the number of lines displayed is limited to
either line-count or the number of lines in the file from the start point,
whichever is less. TJf line—count is specified, start—line must also be speci-
fied.

Pressing right arrow will cause a display pause when hex char #DH 1is encount-
ered or after 256 bytes have been displayed, whichever comes first. Pressing

ENTER will continue the displaying. Pressing up—arrow will termirnate LIST.

Aside from just listing a file, LIST is useful where text files maintain a

DOS LIERSEY COMILANLS 2 =30

LIST - LOAD - MDBORT

date/time stzmp near the beginning. If the user hag multiple copies of z text
file, it mav be necescary to look at the file beginning to determine which copy
1s the most recent.

LIST commmand examples:

1. LIST,BASEPROG/BAS displays the entire contents of file
. BASEPROG/BAS.
2. LIST,XXX,1,6 displays the first 6 lines of file XXX.
3. LIST,YYY:1,20p9 displays the contents of file YYY from the

2pfth line to the end of the file.

2.32. LOAD Load a Z-8p machine language file into RAM.
‘LOAD,filespecl

~ This command loads the Z-8f machine language file filespecl into RAM, and
stores its entry address into the two bytes at 44@3H (17411 decimal). The file
must be in proper loader format, such as created by DUMP or EDTASM. The load
proceeds using control data from the file. 1If the file loads over any part of
the resident DOS (49PPH - 4CFFH) or its overlay area (4DPPH - 51FFH), serious
and maybe file damaging trouble will occur; with luck, the system will hang.

LOAD is used when a program or data is to be loaded into RAM for later use by
other programs. An example is loading programs which will be invoked via
BASIC's USR function. Remember, the entry address is stored in the two bytes
at 44@3H (17411 decimal); this is not done in TRSDOS.

LOAD command examples:
1. - LOAD,OVERLAY/0BJ:1 The object code module OVERLAY/OBJ is loaded
into main memory from the diskette mounted on drive 1. The load control
information within file OVERLAY/OBJ determines what is to be loaded and

where in main memory it is to be loaded.

2. Suppose that BASIC does not use all of high memory and that a BASIC

CMD"LOAD, USR3PGM/0OBJ"
DEFUSR3 = (PEEK(17411) + 256 # PEEK(17412) - 65536

will set this up.

2.33. MDBORT Terminate MINI-DOS and go to DOS READY.
MDBORT has no .parameters. It should only be executed when NEWDOS/8f is in

MINI-DOS state. MINI-DOS state is terminated, the pre-MINI-DOS state purged
and the system goes to DOS READY.

2-31 DOS LIBRARY COMMANDS

MDBORT - MDCOPY - MDRET

The purpose of MDBORT is to provide for the situation where the operator does
not want to continue the main program which was interrupted by the simultaneous
depression of the D, F and ¢ keys (which invoked MINI-DCS).

2.34. MDCOPY Copy a file while under MINI-DOS.
MDUOPY,fiIespecl{,TO],filespecZ

The regular COPY command cannot be executed under MINI-DCS. MDCOPY gives the
user a restricted and quite slow form of file copy which does execute under
MINI~-DOS.

MDCOPY copies the contents of file filespecl to the new Or existing file file-
spec2. File filespecl is not altered, and the pPrevious contents of file file~
spec2, if any, are lost. Filespec? may not be foreshortened as js allowed for
Cory.

MDCOPY command example:
MDCOPY XXX/DAT:$ YYY/DAT:1

The contents of file XXX/DAT on the diskette currently mounted on drive §
1s copied as file YYY/DAT onto the diskette currently mounted on drive 1.

2.35. MDRET Exit from MINI-DOS and return to main program.

MDRET has no parameters. The system exits MINI-DOS state and continues the
main program at the point where it was interrupted by the invocation of MINI-
DOS (simultaneous depression of the D, F and G keys). Tf the cursor was dis-
played before 'DFG', it will be redisplayed. If the 'DFG' interruption occur-
ed while the key input buffer contained 2 partial input record, that partial
record is still there even though it is no longer displayed. The user should
continue keying exactly where he/she left off.

If the invocation of MINI-DOS occured during the timer interrupt rather than
the key intercept, one or more of D, F or G WAY appear as spurious input keys
after MDRET is executed. The user should backspace over them. The user and
DOS have no control over these spurious input chars; therefore DFG should not
be pressed when a Program is in text overwrite mode, such as SCRIPSIT or
Electric Pencil; instead 80 into command mode where the spurious characters can
be backspaced over without damage to the text.

(2}

DPOS LIBRARY COMMANDS

PAUSE - PDRIVE

2.36. PAUSE bisplay messape and pause waitinp on LNTER.
PAUSE,msg

The message msg is not redisplayed if the PAUSE command itself was displayed.
Tf the PAUSE command was not displayed, as occurs if it is executed under
DOS-CALL, the message msg is displayed. In any event, the message PRESS
"ENTER" WHEN READY TO CONTINUE is displayed on the next line. DOS then waits
for the user to press the ENTER key. The PAUSE command is one of the four
ways of causing a pause in chaining, and can 2lso be used when a series of
commands in main memory are being executed by a series of DOS-CALLs.

PAUSE command example:
PAUSE,MOUNT DISKETTE LABELED "PRIMARY" ON DRIVE 1.

This message will appear on the display and will be followed on the next
display line by the message PRESS "ENTER" WHEN READY TO CONTINUE. DOS
waits for the user to press ENTER which presumably he/she will do after
the proper diskette has been mounted in drive 1. DOS doesn't check to see
if the user has done what was requested; all DOS does is wait for the
ENTER. ' :

2.37. PDRIVE Assign default attributes to a physical drive.

PDRIVE[,passwordl:]dnl,[dn2[=dn3]][,TI=type1][,TD=type2][,TC=tc1]
{,SPT=sc1]{,ISR=rc1]{,GPL=gc21{,DD5L=1n1}[,DDGA=gc1]{,A]

NEWD0S/88 has limited capabilities for operating with a mixture of § inch disk
drives and to a lesser extent § inch disk drives. PDRIVE 1s the command method
used to inform NEWDOS/8¢ of a particular physical drive's characteristics.

though the actual number of drives eligible for I1/0 is limited by the SYSTEM
option AL and in no case exceeds 4. Those drives within the range of SYSTEM
option AL are flagged on the PDRIVE display by an asterisk suffixed to the
drive number. The specifications for the 1¢ drives is maintained on the system
diskette mounted on drive dnl. For efficiency reasons, DOS normally uses drive
specifications from a table it has in main memory. This main memory PDRIVE
table contains specifications for 1 to 4 drives, depending upon the SYSTEM op~
tion AL value, and is automatically reloaded from the drive f diskette at power
on and reset if and only if the specifications for all 1§ drives are error free
(otherwise the reset hangs). This table is also immediately reloaded by a
PDRIVE command specifying the A parameter (see below).

Drive dnl is the drive containing the system diskette whose control information
(in the 3rd sector) is being updated. Drive dn2 indicates which physical drive
of the 1§ represented in the control information sector on drive dnl is having

its control information updated.

For example, if the PDRIVE command is PDRIVE,1,4,TC=8f then the diskette
on drive 1 is read to obtain the PDRIVE control information and is updated

2-33 DOS LIBRARY COMMANDS

to contain the new drive 4 specification. Drive 1's PDRIVE control infor-
mation contains the spegifications for ten drives, dn2 values § through 9,
and it is the fifth drive's information (for dn2 = 4) .that is changed.

The specifications for the other nine drives are not changed.

If passwords are enabled, then passwordl must be specified and be the master
password for the diskette on drive danl. Otherwise passwordl may be left out of

the command.

Control data is changed only for the parameters specified; parameters not
specified are not changed. If any errors are displayed, the dnl diskette must
NOT be used as the system diskette during a reset/power—on until the errors are
corrected.

PDRIVE,dnl will list the 1§ PDRIVE specifications contained in the control
data on the system diskette mounted on drive dnl.

dn2 must be specified if any other optional parameters except A are
specified. If dn2 is specified, it must be the Ist parameter following dnl.

dn2=dn3 causes drive dn2 to assume the PDRIVE specifications of drive dn3.
This is done before any other optional parameters are interpreted.

TI=typel specifies the type of disk drive interface. typel consists of one
or more alphabetic letter flags chosen from the list below. For the Model I,
one and only one of flags A, B, C or E must be chosen. For the Model III, one
and only one of flags A or D must be chosen. The other flags are optional
depending upon the interface. Certain flags are inter-drive mutually exclusive
meaning that for a given drive dnl, if one dn2 drive specifies a flag that is
interdrive mutually exclusive with another flag, then another dn2 drive may not
specify the excluded flag. For now, flags B, C and E are interdrive mutually
exclusive for the Model I.

Flag A means the standard disk interface is to be used for diskette I/0
for this drive. For the Model I this interface supports drive types A and
C. For the Model III this interface supports drive types A, C, E and G.

Flag B (Model I only) means that an OMNIKRON mapper type interface is
installed and is to be used for I1/0 for this drive. This interface sup-
ports drive types A, B, C and D.

Flag C (Model I only) means that a PERCOM doubler type interface is in-
stalled and is to be used for I/O for this drive. This interface supports
drive types A, C, E and G.

Flag D (Model III only) means that an Apparat disk controller type in-
terface is installed and is to be used for I/0 for this drive. This in-
terface supports drive types A through H.

Flag E (Model I only) means that an LNW type interface is installed and

1s to be used for I/0 for this drive. This interface supports drive types
A through H.

DOS LIBRARY COMMANDS =34

PDRIVE

Flag B means head settle delay is to be done whenever DOS changes {rom
another drive to this drive. For Model I and Model 1I11.5 inch drives, the
heads for all 5 inch drives are loaded when the motors go on, and this

extra time delay is NOT needed. Flag H 1s needed for 8&" drives.

Flag I means the lowest numbered sector on each track is sector 1. This
is the normal state for Model III TRSDOS diskettes. If flag I 1is not
specified, the lowest numbered sector on each track is assumed to be §,
which is the state for the Model I and for NEWDOS/ 8 on the Model III.

Flag J means the track numbers start from 1. If flag J 1is not speci-
fied, track numbers are assumed to start from @, which is the standard
state for the Model I and the Model I1I.

Flag K means track P is formatted (or is to be formatted) in density

- opposite to that of the diskette's other tracks. This makes track # un-
available for normal I1/0. Flag J is implicitly set by flag K. The pur-
pose of formatting track § in opposite density is to allow a double den-
sity (Model I) or single density (Model III) SYSTEM diskette to be booted
up. The Model I ROM must be able to read the boot sector in single den-
sity, and the Model III ROM must be able to read the boot sector in double
density. Setting flag K causes FORMAT and COPY with format to format
track # in the opposite density and to store the required boot sector onto
that track for the ROMs to use. With flag K set, normal DOS I/0 to track
§ actually goes to track 1, 1 to 2, etc. Flag K must be specified for a

" drive that is to read a double density diskette created by the PERCOM type
~ doubler interface under NEWDOS/8f versiom 1 or any other DOS except
NEWDOS/8f version 2 or higher. For NEWDOS/ 8¢ version 2 Model I, double
‘density data diskettes do not have to reserve track § for opposite density
if those diskettes will never be used on a drive § whose PDRIVE specifies
double density. Flag K must NOT be specified for standard Model III
diskettes, unless for some’ reason the user wants a single density system
diskette on the Model III or is making a double density diskette to be
read on the Model I that does not have NEWDOS/8f version 2. When flag K
is specified, then TC must specify one less track than would be specified
if flag were not specified. Further, due to the differing sequence in
which consecutive sectors are stored on the diskettes, double sided,
double density diskettes created under the patched NEWDOS/8f version 1 are
not readable under NEWDOS/8f# version 2. To transfer files on those disk-
ettes to Version 2, they must first be moved (using Version 1) to either
single sided (either‘density) or double sided, single density diskettes.

Flag 'L means two step pulses between tracks. This allows a 35 or 49
track diskette to be read on an 8¢ track drive. Writing can also be done
in this manner, but the 35 or 4§ track drives have trouble reading some of
the sectors so writing is not recommended.

Flag M means the diskettes are standard TRSDOS Model III diskettes.
Flag M implies flag I. The COPY DOS command is the only function within
NEWDOS/8@ that will honor or even notice a TRSDOS Model III diskette as
distinct from a NEWDOS/8f diskette, and even this will not occur unless
flag M is set.

Flags F through G and N through Z are reserved for future definition.

TD 1is the Type of Drive specification. The definitions are:

1. TD=A 5 inch, single density, single sided drive.
2. TD=B 8 inch, single density, single sided drive.
3. TD=C 5 inch, single density, double sided drive.
4, TD=D 8 inch, single density, double sided drive.
5. Tp=E 5 inch, double density, single sided drive.
6. TD=F 8 inch, double density, single sided drive.
7. TD=C 5 inch, double density, double sided drive.
& TD=0 8 inch, double density, double sided drive.

Tf a CPU speed up module is installed in the computer that reverts to
normal CPU during disk I/0, this reversion must not slow the CPU speed to
less than the original rated CPU speed for that model. NEWDOS/8f's disk
I/0 loops, especially for the Model 1 for drive types B, D, E and G, can-
not tolerate any reduced CPU speed below the original speed. In limited
testing and with SYSTEM option BJ properly set, NEWDOS/8p Version 2 has
run disk I/0 successfully without the need to turn off the CPU speed;
however, Apparat does not guarantee such performance.

TD=F and TD=H require a CPU speed up module installed in the computer
which at least doubles the CPU's speed during disk I/O.

For drive types C, D, G and H, the current NEWDOS/8@ interfaces (TI flags
A, B, C, D or E) consider a double sided diskette as a single volume
(i.e., only one directory) with each track having its lower numbered sec-
tors on the first side and the higher numbered sectors on the second side.
Pin 32 is used to select the 2nd side (specizl cables required), and any
drive on the cable that shunts pin 32 over as a drive 3 select must have
that shunt wire cut to prevent that drive from being selected when another
drive's 2nd side is being selected. Double sided, double density 4@ and
8¢ track drives have been used on the Models I and III under NEWDOS/8¢
Version 2.

One of the strongest reasons Apparat never supported double density in
Version 1 was that most drives did not work reliably well in double den-
sity. Whether this was the fault of the drives, the data separator or the
controller was never really ascertained. Over the last nine months things
have improved somewhat, but double density is still not as reliable as
single density and probably never will be. Apparat was informed that the
two byte pattern 6DB6 is a much better "worst case" double density pattern
than the ES5's used in single density, and indeed the 6DB6 pattern is such.
Tn fact, it is such a good '"worst case' condition that a good percentage
of certified double sided, double density diskettes will fail format. To
many users, this will prove intolerable and they will want to apply the
ZAP that goes back to the E5 pattern, if it 1s not already applied. How=-
ever, using the E5 pattern in double density means that the user will in-
crease the probability that a diskette that formats successfully will at
some future time fail.

TC=tcl specifies the number of tracks on the disk, excluding track # if TI
flag K is set. If flag K is not set, TC=35 for a 35 track drive, TC=48 for a
49 track, etc. Tf flag K is set, then TC=34 for a 35 track drive, TC=3$% for a
49 track, etc.

%)
I
(WS
(e

DOS LIBRARY CONMANDS

PDRIVE

SPr=scl specifies the number of sectors per track. For double sided, singlc
volume diskettes (TD = C, D, G or i), scl must be twice what it would be 1f
single sided diskettes. scl may be any value from 1 to the maximum number of
256 bytes sectors the track can physically hold. For each of the above speci-
fied drive types, the maximum number of sectors per track is: A=1§, B=17,
C=2f, D=34, E=18, F=26, G=36 and H=52.

ISR=rcl specifies the track stepping pulse time code the controller uses for
this drive. rcl is a value from § to 3 and becomes part of the SEEK, STEP and
RESTORE commands sent to the controller. For the Model I and III standard
controllers, TSR=§ gives 5 ms stepping, TSR=l gives 1fms stepping, TSR=2 gives
2Pms stepping and TSR=3 gives &4fms stepping. TSR=3 was the original standard
for the Model I, with some users using TSR=2 or TSR=1 for certain drives. The
Model ITI appears to use TSR=Q) as standard. If you are having drive trouble,
the safest setting is TSR=3.

GPL=gc2 specifies the number of granules per lump where gc2 is a value between
2 and 8. 1In TRSDOS for the Model I and III and the older versions of NEWDOS,
disk space allocation was done via granules (5 sectors per granule on the Model
1 and 3 per granule on the Model III) and tracks (2 granules per track on the
Model 1 and 6 granules per track on the Model III). In NEWDOS/ 89 version 2,
for both the Models I and ITII, there are still 5 sectors per granule, and 2 to
8 granules per lump (not track). Wherever a track number appeared in the
directory (in the GAT sector and in the FDE two byte extent elements), it has
been replaced with a lump number. Doing so allows a granule to start in one
track and end in another and allows double density and 8 inch diskettes to
maximize the number of sectors per track while keeping the same directory
format. GPL=2 maintains compatibility with the old 35 track single density
diskettes, as the directories will be exactly the same and transferable back
and forth between the Model I TRSDOS and NEWDOS versions before NEWDOS/ 89
version 2. However, by going to GPL=8 the directory can now accommodate 192 x
8 x5 =1768p sectors or 1,966,8pp bytes which might suffice for a while.

DDSL=1nl is the logical equivalent of and replacement for the DDST parameter
used in NEWDOS/8f version 1. 1nl specifies the number of the lump at whose
first sector is to contain the directory's lst sector. This value is stored in
the boot sector 3rd byte during diskette format and is used when necessary to
find the directory. It is also used during diskette format to determine where
to put the directory. In the older systems, the 3rd byte of the boot sector
contained the track number in whose lst sector the directory started. Since
tracks are not used in space allocation and control in NEWDOS/ 8¢ version 2, the
3rd byte of the boot now contains the number of the lump in whose lst sector
the directory starts. To determine the relative sector number of the direc-
tory's lst sector (the GAT sector), access the boot sector's 3rd byte and mul-
tiply that value by 5 times GPL. DDSL=17 maintains compatibility with the
standard 35 track, single sided, single density diskettes. DDSL should be set
to the value used for the DDST parameter in NEWDOS/8¢ version 1.

DDGA=gcl specifies the default number of granules to be allocated to the
directory whenm it is created during format, where gcl is a value between 2 and
6. DDGA=2 should be specified for standard 35 track, single density, single
sided compatibility. gecl > 2 allows the user to have more than 62 files on a
data diskette with the maximum being 222 files.

A specifies that if and only if no errors were found during the checking of

2-37 DOS LIBRARY COMMANDS

b 4

FQRES LN O 35 0N

the specifications for all the drives, then the specifications for SYSTEN
option AL number of drives is loaded into the main memory PDRIVE table to
immediately bLecome the controlling data for those drives; this eliminates the
need for a reset. Jf parameter A 1is specified, dnl must = §.

PDRIVE is executeable under MINI-DCS.

PDRIVE command examples:

1. PDRIVE,dnl,dn2,TI=A,TD=A,TC=35,SPT=19,TSR=3,GPL=2,DDSL=17,DDCA=2

is the PDRIVE specification for a standard 5 inch, 35 track, single den-
sity, single sided diskette used for communication in the Model T worid.
This specification can also be used on the Model IITI to read the diskette
providing the directory address marks are correct (see SYSTEM option AN).

2. PDRIVE,dnl,dn2,TI=A,TD=E,TC=4f,SPT=18,TSR=3,GPL=2,DDSL=17,DDGA=2

is the Model III specificaticn (Model I, use TI=C) for a standard 5 inck,
49 track, double density, single sided diskette used for communication
through out the NEWDOS/8f% Model 111 world. Using this specification, this
diskette can also be read on the Model I in a drive other than @ if the
double density interface is installed.

3. PDRIVE,dnl,dn2,TI=AM,TD=E,TC=4¢,SPT=18,TSR=3,GPL=6,DDSL=17 ,DDGA=2

is the Model III specification (Model I, use TI=CM or EM) for reading or
writing to a TRSDOS Model I1I standard 5 inch, double demsity, single
sided diskette. A 4P track, double density, single sided 5 inch diskette
is the only type TRSDOS Model III disKette that NEWDOS/8f car handle.
GPL=6 is mandatory. Since a TRSDOS Model IIXI diskette cannot be formatted
by NEWDOS/8p, DDSL and DDGA are meaningless. In HEWDOS/8) (double density
mod must be installed for Model I), only the COPY DOS command can be used
with TRSDOS Model I1I diskettes excepting that diskette sectors can be
read/written via SUPERZAP by using the DD, DM, DTS, VDS, CDS, CDD, etc.
functions that do not refer to files (i.e., don't use DFS).

4, PDRIVE,dnl,an,T1=A,TD=C,TC=8Q,SPT=2¢,TSR=2,GPL=8,DDSL=ZQ,DDGA=6

is the specification for a 5 inch, 8§ track, single density, double sided,
single volume diskette withe 2fms stepping, 8 granules per lump, with the
directory positioned at the diskette halfway point and maximum size direc-—
tory.. For the Model III, the single density drive @ restriction applies.
5. PDRIVE,dnl,dn2,TI=A,TD=G,TC=8¢,SPT=36,TSR=2,GPL=8,DDSL=35,DDGA=6

is the Model III specification (Model I, use TI=C or F) for a 5 inch, 8¢
track, double density, double sided, single volume diskette to use 2fms
stepping, 8 granules per lump, maximum size directory positioned at the
diskette halfway point. For the odel I, the double density drive §
restriction applies.

6. PDRIVE,dnl,dn2,TI=CK,TD=E,TC=3S,SPT=18,TSR=3,GPL=2,DDSL=17,DDGA=2

is the Model I specification {(Model I1I, use TI=AK) for 5 inch, 4@ track,
double density, single sided diskette that has track § formatted in single
density, hence only 39 tracks available for regular use. This specifica-
tion will handle double density diskettes formated by TRSDOS and NEWDOS/ &0
version 1 running under the PERCOM doubler. This specification will also
be used when generating a double density diskette to be the syctem disk-
ette in drive P for the ldodel T. For LNUW Model 1 interface, vse TI=CK.

NOS LIBRARY COMMANDS 2-38

PLRIVE PRIIT

7. PDRIVE,dul,dnﬁ,TI=CR,TD:C,TL=7S,SPT=30,TSR=3,GPL:S,DDSL:JS,DDCA:R
1s the lodel 7 specification (Model III, use TI=AK) for a 5 inec!
traclk, double density, double sided, single volume diskette that husg
§ formatted single dersity. For the LNW Model T interface, usc TI=EK.

Warning!!! Double sided, double density diskettes used on the patched
NEWDOS/8@, version 1 are not useable on Version 2 (see TI flag K

discussien).

8. PDRIVE,dnl,an,TI=AL,TD=A,TC=35,SPT=16,TSR=3,GPL=2,DDSL=17,DDGA=2
is the specification for a 5 inch, 35 track, single sided, single density
diskette that is to be read on an 8§ track drive. The 80 track drives
step only half as far as the 35 and 4@s for each data track; setting flag
L causes 2 steps to be taken for each data track stepped.

9. PDRIVE,dnl,an,TI=BH,TD=B,TC=77,SPT=17,TSR=3,GPL=3,DDSL=17,DDGA=6

is the Model I specification for an 8 inch, 77 track, single sided, single

density diskette. Note, NEWDOS/8¢ version 1 used SPT=15 and an implied

GPL=3, and to read those diskettes, SPT=15 and GPL=3 must be used. It is

Tecommended that a COPY be done to convert those diskettes to SPT=17, thus

gaining 127 more diskette space. Flag H causes head load settle delay to
 be used, required for most 8 inch drives.

19. -PDRIVE,dnl,dn2,TI=BH,TD=D,Tc=77,SPT=34,T3R=3,GPL=8,DDSL=17,DDGA=6
is the Model I specification for an 8 inch, 77 track, single density,
double sided, single volume diskette with head load settle delay required.

11. PDRIVE,dnl,dn2=dn3 is the specification to cause drive dn2 to
receive as its specifications those of drive dn3.

. 12; PDRIVE,dnl,dn2=dn3,TC=4¢,TSR=2 is the specification to cause drive
- .dn2 to receive as its specifications those of drive dn3 and then to apply
- new values for TC and TSR, ~ :

J13. PDRIVE,§,A causes the PDRIVE data for SYSTEM option AL number of
drives to be loaded into the main memory PDRIVE table if and only if the
full display of the specifications shows no error.

14, PDRIVE,P,dn2=dn3,A changes drive §'s specifications for dn2 to be
those of dn3, and then performs as in the above example.

2.38. PRIHT List a text file on the printer.
PRINT,filespecl[,start-line{,line—count}]

PRINT executes identical to LIST, excepting the listing goes to the printer
instead of the display. Refer to DOS commmand LIST for specifications and
examples.

2-39 DOS LIBRARY rnaannce

2.39. PROT Alter some diskette control data.

PROT,[passwordl:}dnl{,NAMEcnamel}[,DATE=mm/dd/yy}[,RUF]
[,PW=password2]{,LOCK][,UNLOCK]

At least one optional parameter must be specified. The target diskette is
mounted on drive dnl. If passwords are enabled, passwordl must be specified

and must equal the diskette's master password.

NAME=namel The diskette is given the name namel.
DATE=mm/dd/yy The diskette is given the date mm/dd/yy.

RUF Reset Udated Flags. This ortiom turns off the updated flags for all
files on the diskette. If a user backs up only those files having the updated
flag on (see UPD option of COPY), executing PROT with the RUF option after
the copying is completed turns off the updated flags so the files will not be
eligible for a subsequent backup until the file is subseqently updated. Simply
writing or rewriting one sector of the file, whether or not anything was actu-
ally changed, causes DOS to turn on a file's updated flag.

Pw=password2‘ Password2 must conform to the rules for passwords, with null
set as all blanks. The diskette receives password2 as its password.

LOCX All files of the diskette, except system and invisible files, are
given the diskette master password as both their access and update passwords.
If password2 specified, it is used. This feature used to be the only way a

user, in a password emabled system, could get to a file whose password(s) he/

- she had forgotten, if the user did know the diskette master password. It has

the unfortunate drawback in that it changes the passwords for all, except sys—
tem and invisible, files on the diskette; thus causing the user to reassign
passwords to all the others as well as to the file whose passwords he/she for-
got. An easier way is available if the user knows the password of at least one
NEWDOS/8f system diskette or better still, has a NEWDOS/8¢ system diskette with
passwords disabled (system option AA = N). With passwords disabled, the user
can use ATTRIB to directly reassign new passwords to the file whose passwords
are forgotten without having to affect other user files on the diskette. Then
passwords can be reenabled.

UNLOCK The access and update passwords of all of the diskette's files,
except system and invisible files, are set to all blanks, meaning no passwords
for those files.

PROT command examples:

1. PROT,2,RUF The updated flag is cleared for each file on the
diskette currently mounted on drive 2.

2. PROT,OLDPSWD:1,NAME=AAB3 ,DATE=§7/15/81,PW=NEWPSWD

In this example, passwords are enabled; therefore the diskette's master
password OLDPSWD was required. The diskette control information for the
diskette mounted on drive 1 is changed such that its name is AAB3, 1its
date 1s July 15, 1981 and its new master password is NEWPSWD.

DOS LIBRARY COMMANDS 2-40

PULGE - ¢

2.49. PURGE Selectively kill files from a diskette.
PURGE,Ipasswordl:]an[,/ext]{,USR}

The diskette mounted on drive dnl is used for this command. If passwords are
enabled, passwordl must be specified and must be equal to the diskette's master

passvord.

For each file, except BOOT/SYS and DIR/SYS, on the diskette, DOS asks the
operator if the file is to be killed. If the file is to be killed, respond Y;
the file will be immediately killed, as if a KILL command has been issued. If
the file is NOT to be killed, respond N. Respond Q if you wish to quit the
PURGE function.

/ext If this option is specified, the purge queries are limited to only
those files having name extension ext where ext is § to 3 characters.

USR If this option is specified, system and invisible files are not in-
cluded in the PURGE function.

PURGE command examples:

1. PURGE,1 For each file, except BOOT/SYS and DIR/SYS, on the
diskette currently mounted on drive 1, DOS asks if the file is to be
killed. Tf the response is Y, the file is killed.

2. PURGE,§,/DAT For each file on the diskette currently mounted on
drive § that has name extension DAT, DOS asks if the file is to be killed
and does so if the response is Y.

3. PURGE,ﬁ,USR For each non-system, non-invisible file on the
. diskette currently mounted on drive @, DOS asks if the file is to be
killed and does so if the response is Y,

2.41. R ‘ Repeat the previous DOS command.

This command causes the re-execution of the previous DOS command, excluding the
command R. Example: '

DIR 1 followed by:
R ~ .

will execute the same as if the two DOS commands had been:

DIR 1
DIR 1

The R command can not be executed from BASIC via CMD"doscmd" as that function
requires that the command, excluding ENTER, must be 2 or more characters long.

2-4]1 DOS LIBRARY COMMANDS

R - RENAME -~ ROUTE

The R command has no bParameters and must be keyed exactly as R followed by
ENTER. If more than 2 characters are keyed into the buffer and then backspaced
so that DOS only sees the R and the ENTER, the previous DOS command that was
residing in the command buffer will still have been altered and the R command
will either fail or in rare circumstances, execute sormething different than
what the operator expected.

Tf the previous DOS command is no longer intact in the DOS command buffer, the
results of the R command are unpredictable.

Tf SYSTEM option BE = N, the R command does not execute the previous DOS com—
mand but instead simply returns to DOS READY.

2.42, RENAME Rename a file,
RENAME,filespecl[,TO],filespecZ

The file filespecl is renamed to filespec2, where filespec2 consists of only a
name and optionally a name extension. If filespecl does not specify a drive
number, then all mounted diskettes are searched, and the first file encountered
matching filespecl's name and name extension is renamed. RENAME change only
the file's name and name extension; nothing else is changed.

RENAME command example:

1. RENAME XXX/DAT:1 YYY/0BJ The file XXX/DAT on the diskette
currently wmounted on drive 1 has its name changed to YYY and its extension
changed to 0OBJ.)

2.43. ROUTE

1. ROUTE
2. ROUTE, CLEAR
3. ROUTE,devl{,dev2]{,dev3]....

The purpose of the ROUTE command is to allow some flexibility from where the
keyboard and/or RS-232 input is received and to where display, printer and
R5-232 output is sent. This is more restrictive form of routing than is
available in other DOSs.

At the conclusion of a2 ROUTE command, any existing routes are displayed; if
none, nothing is displayed. ROUTE with no parameters does nothing except dis-
Play the existing routes.

ROUTE,CLEAR clears all routes.
devl specifies the device being routed. dev2, dev3, etc. specify the device(s)

being routed to (the routed-to devices) when devl is an output device or routed
from (the routed-from devices) when dev! 1s an input device. For the Hodel I,

ROUTE

the device code: arc UT for the kevbeard, Do for the display, PR for the
printer and NL for null (meaning nothing ic tranefcrred). For the Model ITI
RI for the RS-232 input and RO for the RS-232 output are added to the above
codes. An input device (KB or RI) may not be routed to an output device (DO,
PR or RO), and an output device may not be routed to an input device.

3
¢
-

Whenever devl is specified, ROUTE initially clears amy previously existing
routes for that device and then establishes the routes specified by devZ, dev3,
etc., if any.

Any of the devices dev2, dev3, etc. may also be of the form MM=addr where
addr specifies the main memory location of a user routine to which devl is to
be routed. The first 12 bytes of the routine are reserved for use by DOS and
must not be altered by the user. Upon routing, the user routine is entered via
a CALL at the 13th byte, and it is the user's responsibility to save and re-
store all registers, except AF, used by the routine and routines it calls. If
devl is an input device, the routine returns the new byte in register A with a
zero indicating there is no new input byte from that routime. If devl is an
output device, upon entry to the routine, register C contains the byte being

outputted.

If devl is an output device, the output byte is sent to all routed-to devices
in the order given in the ROUTE command.

If dev]l is an input device, each routed—-from device 1is queried in the order
given in the ROUTE command. If that device supplies a non-zero byte, the
queries stop and the byte is used as the input byte for the devl. If no
routed-from device has an input byte, a zero is considered devl's current byte.

The maximum number of routes—to and routes—from, excluding MM=addr types, in
existence at one time is four for the Model I and six for the Model III.

VARNING!I!V No editing of input or output characters is done during routing.
" This may cause problems (i.e., display control characters causing the printers

to do unpredictable things).
ROUTE command examples:

1. ROUTE,PR,DO Printer output does not go to the printer but
instead goes to the display.

2. ROUTE,DO,DO,PR Display output goes to both the display and the
printer.
3. ROUTE,PR,DO,PR Printer output goes to both the display and the

printer. If the routes of both example 2 and 3 are active, the routing is
equivalent to the Model III TRSDOS function DUAL.

4, ROUTE,KB,RI (Model III only) Keyboard input characters come
from the RS-232 input device and not from the keyboard.

5. ROUTE,DO,RO (Model III only) Display output is sent to the
RS-232 output device and not to the display.

6. ROUTE,PR,MM=0FE8QE Printer output is sent to the routine at main

2-43 DOS LIBRARY COMMANDS

memory location PFE8@H (the routine's actual entry point 1s PFESCH).

7. ROUTE,KB,XB,MM=@F8ppH Keyboard input comes from either the
keyboard or the routine at main memory location @F8PPH. Input from the
keyboard has precedence.

8. ROUTE,PR,NL Printer output is discarded.

9. ROUTE,PR All routing for the printer is dissolved. Printer
output goes to the printer.

1. ROUTE,CLEAR All routes are dissolved, and all devices are
returned to their normal paths. :

2.44, SETCOM (Model III only) Set RS~232 interface parameters.
SETCOM[,0FF][,WORD=w1][,BAUD=br][,STOP=sb][,PARITY=pp][,WAIT][,NOWAIT]

The SETCOM command optionally changes the state of the RS-232 interface and
always displays the state. For RS-232 discussion, see chapter 8 of the Model
III Operation and BASIC Language Reference Manual. The SETCOM command affects
only the standard RS-232 control blocks and routines.

If OFF is specified, the RS-232 interface is turned off. No other optional
parameters may be specified.

I1f any of WORD, BAUD, STOP or PARITY is not specified, the state for that key-
word is not changed.

WORD=wl specifies the number of bits per transmission byte. wl must be one of
5, 6, 7 or 8.

BAUD=br specifies the transmission rate (the baud rate) for both sending and
receiving. The 16 allowable values for br are 5¢, 75, 11¢, 134, 159, 3pH, 699,
1209, 1890, 200p, 2409, 3690, 480p, 720p, 96PPH and 192pP.

STOP=sb specifies the number of stop bits to be used for each byte transmit—
ted. sb is either 1 or 2.

PARITY=pp specifies the parity to be used in the transmission where 1 = odd
parity, 2 = even parity and 3 = no parity.

WAIT or ROWAIT are mutually exclusive and specify whether or not the RS-232
input routine is to wait until an input byte is received and the output routine

is to wait until the current byte has been sent. If neither WAIT nor NOWAIT is
specified, the previous wait or no wait state remains.

SETCOM command examples:

1. SETCOM,WORD=8,BAUD=3p§,STOP=1,PARITY=1,WAIT Activates the RS=232

DOS LIBRARY COMMANDS ool

SETCR - STHT -~ SYSTEM

interface, if not already active, and sets the interface for € bit bytes,
3Pf baud rate, one step bit, odd parity and forces the RS-232 routines,
when called, to wait until an input byte is ready or until the RS-232

output device will accept an output byte.

€

2. SETCOM,NOWAIT,PARITY=3,WORD=7 Activates the RS-232 interface, if
not already active, and sets the interface for 7 bit bytes, no parity and
causes the RS~232 routines not to wait until an input byte is ready or the
R5-232 output device will accept an output byte. The TRS-8f§ interrupt
routines will handle the actual byte input or output with the RS-232
device. The other parameters not mentioned in the command are not
changed.

3. SETCOM,OFF The RS-232 interface is deactivated. The current
interface specification is remembered.

2.45. - STMT Display specified message.
STMT,msg

Since normal DOS commands are always displayed, this command normally has
nothing to do since its function, to display the message msg, has already been
done. However, if this command was invoked via DOS-CALL (which does not dis-
play the DOS command), the message msg is displayed.

STMT is one of 3 ways in chaining to display a message without a pause. This
allows multiple line instructions to be displayed, with the last line being a
PAUSE and the others being STMTs.

STMT command examples:

3

1. STMT PHASE ONE COMPLETED This is simply an announcement to the
terminal operator that phase one (whatever that was) has been completed.
DOS does not pause.

2. STMT DISMOUNT AND STORE AWAY DISKETTE XXX
PAUSE AND MOUNT DISKETTE YYY ON DRIVE 2.

This example illustrates the combined use of the STMT and PAUSE commands
to give instructions and wait until they are carried out.

2.46, SYSTEM Change system options.

SYSTEM,[passwordl:]dnl[,AA=yn][,AB=yn]{,AC=yn][,AD=yn]I,AE=yn]
[,AF=yn]l,AG=yn]{,AI=yn][,AJ=yn][,AL=al][,AM=am][,AN=an]
[,40=a0][,AP=ap][,AQ=yn][,AR=yn][,AS=yn]] >AT=yn][,AU=yn]
[,AV=av][,AW=aw]{,AX=ax][,AY=yn][,AZ=yn]{,BA=yn]{,BB=yn}
[,BC=yn][,BD=yn][,BE=yn][,BF=yn]| sBG=yn][,BH=yn][,BI=bi]
[,BJ=bj][,BK=yn}[,BM=yn][,BN=yn]

2-45 DOS LIBRARY COMMANDS

Q151N

The NEWDOS/8f system diskette whose control information is being updated/
displayed by this command is mounted on drive dnl. Tf passwords are enabled,
passwordl must be specified and be equal to the diskette's master password. If
no optional parameters are specified, then only a display of existing options
is.given. The optional parameters may be specified in any order, and only
those parameters specified have their values changed in the diskette's control
data (3rd sector on the diskette). Parameters not specified are not changed.

Jf many options are being changed, it may be necessary to perform multiple
SYSTEM commands as the DOS buffer is limited to 79 characters per command.

It is anticipated that additional options will be specified as time proceeds.

Changes to a system diskette's system option's do not affect the computer
operations until that system diskette is mounted on drive @ and a reset done.

AA=yn If AA=Y, passwords are enabled. If AA=N, passwords are disabled.

=yn If AB=Y, the system is to operate in RUN-ONLY mode. SYSTEM options
AD=N, AE=N and AF=N are forced at reset time, and the pressing of ENTER to
override the auto command is disallowed. The user must have a proper auto
command (see AUTO, section 2.4) that will either invoke a user program Or exe-
cute a CHAIN file that will eventually invoke a user program. In RUN-ONLY
mode, if the system finds itself at normal DOS READY or MINI~DOS READY, it will
go into an endless loop after displaying 'RUN ONLY STOPPED!! PRESS 'R' FOR
RESET'. Upon receiving R, the DOS command BOOT (see section 2.7) will be exe-
cuted. BASIC honors RUN-ONLY by disabling BREAK, treating LOAD without R or V
as an error, and by not allowing any direct statements. If AB=N, the system 1is
in normal command mode.

AC=yn (Model I only) If AC=Y and if SYSTEM option AJ=Y, thé NEWDOS/8f's
debounce routine is used. If AC=N or SYSTEM option AJ=N, the NEWDOS/8f's de-
bounce routine is bypassed.

AD=yn If AD=Y, 'JKL' is enabled, and if AD=N, 'JKL' is disabled.

AE=yn If AE=Y, '123' is enabled as the method to invoke DEBUG (see section
4.1). If AE=N, '123°! is disabled.

AF=yn If AF=Y, 'DFG' is enabled as the method of invoking MINI-DOS (see
section 4.2). If AF=N, 'DFG' is disabled.

AG=yn If AG=Y, BREAK is considered a normal input key with code = #1. If
AG=N, the BREAK key is not considered a normal input key and its occurrence is
changed to the null key code #fi. The state of the BREAK key is set according
to option AG at reset and then again everytime the system returns to normal DOS
READY. DOS command BREAK may be used to enable or disable the BREAK key until
the next normal DOS READY. Also, programs may enable the BREAK key by storing
a #CI9H byte in Model I location 4312H (Model III location 4478H) or disable
the BREAK key by storing a §C3H byte in that location.

AH=yn Not defined in NEWDOS/8f, version 2. Formerly, this dealt with de-
laying the disabling of timer interrupts during disk I/0 to gain better clock
accuracy. This is no longer done.

[R]

DOS LIBRARY COMMANDS -46

Al=yn (Model 1 cmnly) 1f Al=Y, lowcr case modification has been instal
in the computer and 4I=N 1f it 1s not. User programs may test for bit & ¢
436CH for this state, 1 1f AI=Y and § if AI=RK. Currently, DEBUG and SUPC
use this flag to decide whether memory displays can display lower case.

AJ=yn If AJ=Y, NEWDOS/8f's keyboard intercept routine is active. This
routine contains repeat key function, 'debounce' (Model I only) and one cof the
nmethods used to spot 'JKL', '123' and 'DFG' (the other being off the timer
interrupts). If AJ=N, NEWDOS/SQ does not intercept the keyboard two byte
address vector at 4@16H and

1. The repeat key function for the Model I is not active regardless of
the SYSTEM option AU. The Model III reverts to the ROM repeat key

function.
2. ‘'debounce' (Model I only) is not active regardless of SYSTEM option AC

setting.
3. 'JKL', '123' and 'DFG' can only be triggered via the interrupts,
resulting in many more spurious key input characters.

Tf the up-arrow key is depressed all during the reset/power-on sequence, AJ = N
is forced; this is necessary for those programs that eventually overlay the DOS

in main memory.

AK=yn Not defined in NEWDOS/8#, version 2. Formerly, this option dealt
with allowing 'JKL' to pass graphic characters to the printer. This has been
incorporated into SYSTEM option AX.

Al=al al (value 1 - 4) specifies the number of physical drives in the svs-
tem. If your system only has one drive, setting al = 1 will limit the system
to only checking for that one drive. Though al can be set to 255, it should
never exceed 4. .

AM=gm am (value $§ - 255 where @ = 256) is the number of tries allowed for a
disk I/0 before it is declared in error. The original DOSs used a value of 1§.

AN=an an = the default drive number for the DIR command.

A0=ao When creating a file and when the user lets the system choose the
diskette to contain the file by not specifying a drive number in the filespec,
the system will first search all the drives for an existing copy of the file.
If it does not find an existing copy, the system will start searching at drive
ao, and will search that and higher numbered drives until a free FDE is found.
It will not search a drive whose number is less than ao.

AP=ap ap is a memory address, which if other than § and is within the range

of existing memory, is stored as DOS's HIMEM address value in the two bytes at
Model I location 4@§49H (Model III location 4411H).

AQ=yn If AQ=Y, the CLEAR key is enabled; and if AQ=H, the CLEAR is disabled
if SYSTEM option AJ=Y. '

AR=yn If AR=Y, COPY, formats 5 and 6, are allowed without diskette password
checking even though passwords are enabled. Tf AR=N, passwords are required if
passwords enabled.

2-47 DOS LIBRARY COMMANDS

SYSTEM

AS=yn (Model I only) 1f AS=Y, BASIC will convert lnput text character
strings from lower to UPper case. This is useful when lower case hardware is
not installed or when lower case drivers are not used as it is very possible to
input lower case characters (using the shift key) and have BASIC display them

"as upper case even though they are really lower case. The user can stare for-

éver at a compare that looks equal on the display, but BASIC computes as un-
equal. If'as = N, BASIC will leave the text character strings alone. This
option does not affect string characters input as data rather than as part of

AT=yn AT=N puts chaining into record mode, meaning that only requests for
full records come from the chain file; single char key input request are hon-
ored from the keyboard. AT=Y puts chaining in single character mode meaning
that all requests for an input key come from the chain file.

AU=yn AU=Y turns on the clock driven repeat key function. The first repeat
will delay option AV number of 25 ms intervals. Subsequent repeats will enter
as fast as the program asks for them but not more than 12 per second. AU=N
turns off the repeat key function, eliminating repeat keys on the Model I and
shifting to the ROM repeat key function on the Model III.

AW=aw is the number of write~with—verify disk I/0 tries allowed. This I/0
retry count works in conjunction with option AM=am with each retry under AW
taking place only after the sector verify read has failed am number of times.
Formerly, if sector write encountered no error and the verify read did result
in an error, it was left to the user to retry the write. Now, if aw is greater
than 1, the write will automatically be retried in the cases where the write
was apparently good but the verify read failed.

AX=ax This is ASCII code of the highest printable character for the printer.
It is used by System routines to determine when to substitute blanks oT per-
iods in place of ASCII codes higher than thisg value. This value must not ex—
ceed 255. This high ASCII code is stored in the one byte at Model I location
437¢H (Model IIT location 429¢H). .

AY=yn is used only during resets wherein DOS senses that it was not active
immediately Prior to the reset (i.e., reset after power-on or after execution
of non-disk BASIC). AY=Y Causes the operator to be asked for date and time.
AY=N bypasses this query and causes date and time to be set to zeroes.

AZ=yn is used only during resets wherein DOS senses that it was active
immediately prior to the reset. AZ=Y causes the operator to asked for date and
time. AZ=N causes date and time to be left as they were prior to the resat.

BA=ym BA=Y causes a reset to activate ’ROUTE,DO,NL', thus causing all dis-
play output, including the DOS and BASIC banners, to be lost until the operator
Or a user program executes either "ROUTE,CLEAR' or 'ROUTE,DO'. BA=N disables

this reset action.

BB=yn (Model III only) BEB=j informs the System that the clock interrupts

DOS LIBRARY COMMANDS 2-48

SYSTEH

vccur 6P times 2 second. BB=Y informs the system that the clock interrupte
occur 5§ times a second. This option does not sct the clock to perform as
such, but only acknowledges that it docc.

BC=yn BC=Y means the operator can manually pause or czncel chaining. BC=N
means the operator is not allowed to manually pause or cancel chaining. RUN
ONLY forces BC=N.

BD=yn BD=Y means the operator can override the AUTO command at reset by
holding down the ENTER key. BD=N means he/she can't. RUN ONLY forces BD=N.

BE=yn BE=Y enables the DOS command R to repeat the previous DOS command
(see section 2.41). BE=N causes the R command to simply return to DOS READY.

BF=yn (Model T only) BF=Y performs at reset/power—on time the equivalent
of the DOS command LCDVR,Y (see section 2.29). BF=N performs the equivalent
of LCDVR,N. However, if DOS senses that the lower case hardware is either not
installed or is not operating, BF=N is forced.

BG=yn BG=Y performs at reset/power—on time the equivalent of the DOS com-
mand LC,Y (see section 2.28). BG=N performs the equivalent of LC,N .
BE=yn At reset/power—-on time BH=Y enables cursor blinking, and BH=N in-
hibits it. '

BI=bi At reset/power-on time, the numeric value bi is set as the cursor

character's value, excepting that if bi = @, then the standard cursor character
value is used (95 for the Model I and 176 for the Model III).

BJ=bj Option BJ provides a minimal control for NEWDOS/80 when a CPU speed
up modification is installed that is to continue operation during disk opera-
tions. This option multiplies (roughly) by bj the number of Z-8§ instructions
executed during certain timing loops used internal to NEWDOS/8f. bj must be an
integer greater than § and equals the number of times the CPU has been speeded
up. Set bj = 1 if the loops are not to be lengthened. If the loops are to be
lengthened, bj must always be rounded up in the cases where the new CPU speed
is not an even multiple of the original Model I or Model III speed. Option BJ
does NOT perform the actual CPU speed switching.

BK=yn BK=Y allows the DOS command WRDIRP and the W and C functions of
DIRCHECK to be executed. BK=N causes these functions to be rejected with
'DISK ACCESS DENIED'.

BM=yn BM=Y causes diskette formatting to verify read sectors in a separate
VERIFYING phase after all tracks have been formatted. This verify read is in

addition to the verify read done on a track's sectors immediately after the in-
dividual track was formatted. BM=N bypasses this VERIFYING phase, deeming as
sufficient the verify sector read done when the individual track was formatted.

BE=yn (Model I only) BN=N causes the write of single density diskette
directory sectors to use the address mark readable by Model I TRSDOS. BN=Y
causes the write of single density diskette sectors to use the address mark
readable by Model III NEWDOS/8f. BN=Y should only be used where it is required
that single density diskettes be NEWDOS/8p version 2 exchangeable between the
Model I and the Model III.)

2-49 DOS LIBRARY COMMANDS

SYSTEM - TIME

Though the information contained in the directories used by Model I
TRSDOS, Model I NEWDOS/8p and Model III NEWDOS/8f is the same (except for
some additions by NEWD0OS/89), the address mark byte (part of the magnetic
format and identification bytes that surround each 256 bytes of user data
on the soft sectored diskettes) used to indicate the directory sectors are
'protected' is different on the Model III than it is on the Model I for
single density diskettes.

The changing of SYSTEM option BN does not in itself change the address
mark of any directory sectors. All this does is set the protected sector
write routine in DOS to write the specified address mark whenever a pro-
tected sector is written or rewritten to disk. To set all sectors of a
single density diskette directory to the proper address mark, use either
DOS command WRDIRP or DIRCHECK with the W option. Warning!!! If a single
density diskette has been used on the Model III or has been used on the
Model I where BN=Y and the diskette must now be used with Model I TRSDOS,
the user must set BN=N and rewrite the directory sector address marks
using WRDIRP or DIRCHECK with option W. This must be done even though,
with BN=N, SUPERZAP under NEWDOS/8@ on the Model I shows the directory
sectors protected; this is because Model I NEWDOS/8p accepts either
address mark value as ‘protected' though it only writes the one value
specified by option BN.

System option codes BO and up are reserved for future definition.

SYSTEM command exapmples:

1. SYSTEM,{,AL=4,AA=Y,AU=Y,AV=20,AT=Y The SYSTEM control parameters
AL, AA, AU, AV and AT are changed on the current system diskette mounted
on drive #. All the other SYSTEM parameters are left unchanged. The full
SYSTEM specification is then displayed. These changes are not used to
control NEWDOS/8f until the next reset/power-on.

2. SYSTEM,2,AP=QFF0QH,AN=1,AX=126 The SYSTEM control parameters AP,
AN and AX are changed in the control sector of the diskette currently
mounted on drive 2. No other SYSTEM parameters are changed. The full
system specification contained on that diskette is then displayed. For
the SYSTEM parameters contained on that diskette to control NEWDOS/8f,
that diskette must be a NEWDOS/88 version 2 system diskette, must be dis-
mounted from drive 2 and remounted on drive §, and a reset/power-on must
be done.

2.47. TIME Set the real time clock.
TIME{ ,hh:mm:ss]

If no parameters are specified, the current times is displayed in hh:mm:ss
format.

If hh:mm:ss is specified, the clock is set to time hh:mm:ss where hh is a 2
digit hour value, @9 - 23, mm is a two digit minute and ss is a two digit

DOS LIBRARY COMMANDS -50

TIMT —~ VERIFY

b

ceconds value. No chech is made on (he valsa iy o the velues. Fzaal of the
threc values is converted to & single byie value and storce into ite byte of
the clock. The clock three bytes start at model 1 locorion &P4110 (model 111
location 4217H) and are in seconds, minutes, hours order.

At reset/power-on the clock is set according to SYSTEM option AY or AZ. The
clock is updated once a second. The user should not rely upon the clock for an
accurate value as disk I/0 frequently and interrupt routines infrequently run
s0 long with interrupts disabled that one or more timer interrupts will be
nissed, causing the clock to run slow. The real time clock is not a hardware
clock, but instead is maintained by software that is not aware of the lost
timer interrupts.

TIME command examples:

1. TIME,15:23:99 The clock is set to 3:23 PM.
2. TIME ‘ The current time is displayed.

2.48. VERIFY g Require verify read after every disk write.
VERIFY[,yn]

NEWDOS/8f performs verify read after all of its directory writes and after all
sector writes when logical record or single byte I/0 is used. It does not per—
form verify reads when full sector writes are done via the 4439H vector.

YERIFY or VERIFY,Y Diskette writes done via the 4439H vector are verify
read. A verify read means the sector is read after it is written. If the sec—
tor was written illegible or with bad parity, an error will be triggered. A
byte for byte data compare is not done. However, if the verify read detects an
error and SYSTEM option AW is not equal to 1, the write and verify read will be
done again since the system still has access to the data that should have been
placed into the diskette sector.

VERIFY,N Diskette full sector writes done via the 4439H vector are not
verify read.

COPY, EDTASM and BASIC SAVE's write the file completely without validity read,
but then read back the entire file as a verify read. All BASIC disk data
writes to print/input files, marked item files, fixed item files or field item
files (where record length is not 256) perform verify read due to the fact that
byte rather than sector I/O is used. Field item files with record length 256
use sector I/0 and are not verify read unless VERIFY is on.

2-51 DOS LIBRARY COMMANDS

WKL EY

2.49. WRDIRP Write directory sectors protected.
WRDIRP,dnl

WRDIRP causes the directory sectors for the diskette in drive dnl to be read
and rewritten in the currently defined protected state for the current computer
(see SYSTEM options BN and BK).

This command is used where single density diskettes are to be exchanged under
NEWDOS/8f version 2 between the model I and III.

This command enables the user to set the directory to the proper read protect
state while under MINI-DOS,. since it is most likely he/she will find out about
the problem when in the middle of doing something else (and thus can't get to
DIRCHECK). CAUTION!!! This command uses the directory starting granule number
from the 3rd byte of the boot sector to find the directory. It then checks to
see if the FPDE's for BOOT/SYS and DIR/SYS are present. If these checks pass,
it then changes what it thinks are the directory sectors all to protected
status. Do NOT use this command unless you are sure the cnly problem is the
different protection status between the model I and model III; if you have
doubts, use the W function of DIRCHECK.

If SYSTEM option BK = N, the DOS command WRDIRP is disabled.
WRDIRP command example:
1. WRDIRP,1 For the diskette mounted on drive 1, the directory

address marks are set for the current computer and, if Model I, for the
setting specified by SYSTEM option BN.

DOS LIBRARY COMMANDS 2-52

3. DOS RODTINES.

3.1. This chapter specifies the DOS routines that are available for use by
machine language programs. If you are neither a Z-8f programmer nor interested
in Z-88 machine code, you should bypass this chapter. Readers of this chapter
are assumed to be knowledgeable of Z-8% machine code and at least one assembly
language for the Z-8¢.

These DOS routines have entry and exit conditions, and rather than repeat then
in each routine's specification, some of the conditions are defined here with
the using routine's specification simply refering to the condition's code.

A. Only register AF is altered by the routine. Any other registers used
by the routine are saved on entry and restored on exit.

-B. On exit, Z state is set if no error is encountered during the
routine's execution. NZ state is set if a DOS error is encountered, and
register A contains a DOS error code. The setting of Z and NZ takes
precedence over the setting of other flags such as C and NC.

C. On entry, DE points to an open FCB.

There are incompatabilities with TRSDOS in the use of some of these routines.
They are discussed briefly in the routines where they occur, so study them
carefully. The reader should also be aware of the differences in the way the
FCB fields NEXT and EOF are maintained (see FCB specification, section 5.9).

The discussion of each routine gives its entry address (the address to be used
in the CALL or JP Z-8¢ instruction), then its title (if one is appropriate),
and then its specification.

Unless otherwise specified, the DOS routine uses the invoker's stack. Unless
specified as a dead end routine, the DOS routine exits to the caller.

Many of these routines use a FCB (see section 5.9). NEWDOS/88 on both the
Models I and III and Model I TRSDOS all use a 32 byte FCB while Model ITI
TRSDOS uses a 5@ byte FCB. NEWDOS/8f will run with user programs having the 5¢
bytes FCB but will only use the first 32 bytes of those FCBs. Programs using a
32 byte FCB with Model III TRSDOS will have problems.

The routines listed below are not necessarily in ascending numeric order.

-

.
v

3.2. 4P 2DH. No—Error Exit. Dead end routine. Programs concluding
with no error jump to 4@2DH. DOS checks its own state in the following order.

If either MINI-DOS or DOS—-CALL, the stack pdinter is set to where it was

before the last DOS command; otherwise it is set to DOS's stack area and
the BREAK key is enabled/disabled according to system option AG.

3-1 DOS ROUTINES

If DOS-CALL and if either not chaining or chaining is not to be continued
at the current DOS level, all registers except AF are restored to as they
existed on DOS-CALL entry, Z state is set, and a return is made to the
DOS—CALL invoker. If this was the outermost DOS-CALL level, DOS is taken
out of DOS-CALL state. i o -

1f RUN-ONLY and if chaining is not active, the messagé 'RUN ONLY STOPPED!!
"KEY 'R' FOR RESET.' is displayed, DOS loops waiting on the reply, and then
executes DOS command BOOT (see section 2.7).

1f DOS—-CALL and if chaining is to continue at the current DOS-CALL level,
DOS waits for the mext command from the chain file.

If MINI-DOS, then MINI-NEWDOS/8@% READY is displayed,. and DOS waits for the
next command.

'If chaining is active, DOS waits for the next command from the chaim file.

NEWDOS/8¢ READY is displayed and DOS waits for the mnext input command.

3.3. 493pH Error—already—-displayed DOS Error Exit. Dead end routine.
Programs concluding with an error that is either already displayed or not to be
displayed jump to 4@3PH. DOS action is the same as for 402DH except as
follows: :

1f CHAINING, chaining is aborted.

1f DOS—-CALL, the current DOS-CALL level is exited in the same manner as
for 4P2DH, except that C state is set.

3.4, &4000 Performs identical to &4P2DH.

3.5. 44958 Enter DOS and execute a command. Dead-end routine. DOS is
entered, and the stack pointer is set to DOS's own area. HL points to a com—
mand, terminated by a #DH byte, that DOS is to use as its next command. DOS
moves this command to its own 8§ byte command buffer and then executes it.

3.6. 4449H DOS Error Exit. Dead end routine if bit 7 of register A
equals §. Programs terminating with a DOS error jump to 44@9H with the DOS
error code in register A and bit 7 of register A equal §. Depending upon DOS's
state, the following actions occur:

If CHAINING, chaining is abort-~d.

DOS ROUTINES 3-Z

1t DOS-CALL, the current DOS-CALL level 1s exited in the same manror as
for 4$2DH exit, except NZ and NC state 1t set and the DOS error code 1:g in
register A. The error msg 1is not displayed.

.

Otherwise the DOS error message 1is displayed, and an exit is taken to

A program may CALL 44@9H to display an error msg by placing the error code
in A and setting bit 7 of register A equal to 1. The appropriate DOS error
message will be displayed. On return, only the F register has been altered.

The Model I TRSDOS will print diagnostics if bit 6 of register A equals §. The
Model III TRSDOS displays only the error number if that bit equals § and the
error message if that bit equals 1. NEWDOS/8f¢ ignores the value of that bit.

Debugging hint. By setting the 4 bytes at 44P9H equal to CD $D 44 C9, the er-—
ror display routine can be made to invoke DEBUG instead of displaying the error

message.

3.7. 44¢DR Enter DEBUG. User programs have two methods of entering the
DEBUG facility: (1) by use of Z-8§ instruction RST 3PH and (2) by the Z-88 in-
struction CALL 44@DH. When done with the DEBUG facility, DEBUG command G will
return to the instruction following the RST 3PH or the CALL, provided the PC
register was not changed.

3.8. 441¢H (447BH in Model III) Enqueue a user timer interrupt routine.
Registers AF, BC, DE and HL are altered by this routine. On entry, DE points
to the user interrupt routine which must conform to the following format:

1st 2 bytes. Used by DOS as a forward chain pointer. On entry, the two
bytes can be any value.

3rd byte. The number of 25ms intervals to pass between invocations of the
user's routine. Example, if the routine is to be invoked every second,
the 3rd byte must be set = 4@ (28H). DOS does not alter this byte.

4th byte. Count down value to the next invocation. On entry, this byte
should be properly initialized to a value greater than § but less than or
equal to the value in the 3rd byte. Every 25ms interrupt, DOS decrements
this value. If the result is non-zero, this routine is bypassed for this
25ms interrupt. If the result = @, the value from the 3rd byte is moved
into the fourth byte, registers HL, DE, BC and AF are saved, and the user
routine is called at its 5th byte. Any other registers used by the
routine must be saved/restored by it. Interrupts are disabled, and the
user routine must not re—enable them.

While a user interrupt routine is in the interrupt chain, it must not be al-

3-3 DOS ROUTINES

tered in any way except by a routine that runs with interrupts disabled; the
first two bytes must never be altered.

Model I TRSDOS-uses the 4 vectors, 441PH, 4413H, 4416H and 4419H, for its. user. . .
“interrupt routine handling. NEWDOS/8f uses only 441fH and 4413H for non-
compatible handling of these routines. Any program using a 25ms interrupt user
routine in TRSDOS must be modified to work under NEWDOS/8P. This is a major
incompatibility between the two Model I systems.

Model III TRSDOS has not yet made any provision for user timer routines, using
441PH - 441BH for other purposes, including HIMEM.

Model III NEWDOS/8§ continues with the user timer interrupt routine mechanism
used on the the Model I, except that 447BH is the routine enqueue vector
instead of 441PH, and in order to continue with 25 ms counting where the Model
IIT clock actuwally counts in either 3fths or 25ths of a second, a second pass
through the user routine check and invocation sequence 1s done when necessary
to bring 25ms counting up with the real clock. If a user routine is being in-
voked every 25 ms, the routine must be prepared to accept two invocations
within the same timer interrupt.

3.9. 4413H Dequeue a user timer interrupt routine. Registers AF, BC,
DE and HL are altered. The user interrupt routine (as described in section
3.7) pointed to by register DE is taken out of the 25ms interrupt chain, if it
is in the chain. The routine no longer participates in the interrupts and may
now be altered at will by the user.

See section 3.8 for TRSDOS incompatibility.

. 3.1p. 4416H Keep drives rotating. If the disk drives are rotating,
reselect the current drive, thereby keeping the drives rotating for approxi-
mately 2.4 seconds more. Register AF is altered.

This routine does not exist in TRSDOS; see section 3.8 for incompatibility.

3.11. 44198 DOS—CALL, Execute a DOS command and return. This routine
is DOS-CALL. DOS does not shift to its own stack area, but instead remains
with the user's stack. All registers except AF are saved in the stack and will
be restored on return. The command to be executed is pointed to by HL, must be
less than 8§ characters, must terminate with byte PDH, and can be anything
legal for the current state DOS is in. DOS sets DOS—-CALL state, if not already
set, saves the current stack pointer, and executes the command. The command
can be the invocation of a user program.

DOS~CALL is now legal under CHAINING where it was not in NEWDOS/88 Version 1.

DOS RUUTINES 3-4

DOS-CALL is the way BASIC cxecutes the DOS command contained within the BASIC
statement CHMD'"xx" where xx ic the DUS command.

The DOS-CALL caller is responsible for assuring that memory conflicts do not
arise and that sufficient stack space is available.

Nested calls to DOS-CALL may be executed. Upon exiting from a DOS-CALL level,
the return is made to the next outer level. When the outermost level is exit-
ed, DOS leaves DOS-CALL state.

If the DOS command invokes a program, that program may use its own stack area,
and it must exit using one of the three exits: &P2DH, 4P3PH or 44@9H. On
exiting, the program may store a 2 byte parameter in 4493H, 44@4H (17411, 17412

decimal) for use by the caller.

The 4419H vector is used differently in TRSDOS; see section 3.8 for incompati-
bility. ,

See section 4.4 for further discussion of DOS—-CALL.
S

3.12. 441CH Extract a filespec. From the text pointed to by HL, ex-
tract a filespec, place it in the area pointed to by DE and terminate it with

the byte #3H. Registers AF, BC and HL are altered.

If the first text character is A - Z or § — 9, or if the first text character
is * and the next character is A -~ Z or § — 9, text is moved from the HL area
to the DE area until a character that is not /, ., :, A=-2, or § - 9 is en-
countered -or until 32 bytes have been transferred. If less than 32 bytes, a
@3H byte is placed after the last byte in the DE area to indicate end of file-
spec, and a return is made with Z state set. If the filespec is more than 31
characters it is considered improper as discussed in the following paragraph.

If the first character was improper, or if the first character was * but the
2nd was improper, a return is made with NZ state set.

On exit, if the terminator/improper byte equals #3 or #DH, then HL points to
that byte; otherwise HL ‘points to the next byte.

The user will notice that NEWDOS/8§ doesn't check for an exact filespec; it
leaves this to be done by the OPEN routines, 442fH and 4424H.

3.13. 44200 Open a FCB to a new or existing disk file. Conditions
3.1.A and B hold. The entry requirements are the same as for 4424H, which is
executed immediately as a subroutine to this routine. If 4424H is successful
in opening an existing file, no further action is required here, and an exit is
taken with Z and NC states set. If the file was not found, this routine pro-
ceeds to create the file.

If the filespec in the FCB pointed to by register DE specifies an explicit

3-5 DOS ROUTINES

drive number and the diskette mounted on that drive has a free FDE, the file is
created on that diskette whether or not the diskette actually has any free
space. If the filespec did not specify a drive number, the system starts
searching mounted diskettes, starting with the drive number specified by SYSTEM
-option AO and preceeding through higher numbered drives until a diskette with a
free FDE is found. If a free FDE is not available, the file cannot be created,

and the error exit is taken. -

Creating a file consists of converting a free FDE to a FPDE. This entails in-
serting the name and name extension (if any), encoding the password (if any) as
both the update and access passwords, storing the LRECL (§ means 256) from
register B, setting the EOF equal to f, setting access level as FULL, and
marking the file non-system, non-invisible. No diskette file space is assigned
to the file at this time; in fact, DOS doesn't even look to see if the diskette
has any free space. Note, though the LRECL is stored in the FPDE during file
creation, it is never used. Fach subsequent open of the file uses the LRECL

provided in register B.

After the file is created, the DOS routine at 4424H is called to perform the
OPEN. On exit after a successful file create and open, Z and C states are set.

3.14, 44241 OPEN a FCB to an existing file. Conditions 3.1.A and B hold.
On entry, register DE points to a FCB containing the filespec for the file to
be opened, HL points to a 256 byte buffer to be used during disk sector reads
and writes for this FCB, and B contains the LRECL (9 = 256). If an explicit
drive number was specified in the filespec, the search for the file is limited
to that drive; otherwise the search starts with drive ¢ and proceeds to higher
drives until a file with the specified name and name extemsion is found. If no
file is found, the error exit is taken.

If passwords are enabled and the file has non-null passwords, then an error
exit is taken if the filespec does not contain either the update or the access
password. If passwords are disabled or the file has no passwords or the update
password is specified, the FCB's access level 1s set to FULL; otherwise the
access level from the FPDE is placed into the FCB to limit the type of access

for this file.

The FCB is converted from containing the filespec to containing information
about the file, which will be used while the FCB is open to reduce the amount
of directory I/0 which would otherwise be required. The conversion entails
copy- ing the EOF and the lst 4 extents from the FPDE, storing the LRECL from
regis— ter B, setting bit 7 of the FCB's 2nd byte equal to 1 if LRECL is not
equal to # (to indicate logical record processing), setting NEXT equal to 9,
storing the drive number and the FPDE's DEC code, storing the 256 byte buffer
pointer from register HL, setting the access level, setting bit 5 of the FCB's
2nd byte equal to 1 to indicate that the buffer does not contain the current,
sector and setting bit 7 of the FCB's lst byte equal to 1 to indicate that the

FCB is open.

DOS ROUTINES 3-6

3.15. 44281 CLOSE a FCB. Conditions 3.1.A, B and C hold. This rourine
dissolves the connection between the FCB and the file. Tf bit 4 of the FCb'se
ind byte equals 1, the FCB's buffer is written to disk like a 44391 cz11. TIf
the FCB's EOF is different from that in the FPDE, the FPDE is updated for the
new EOF. IJf the file has excess granules beyond EOF and if automatic space
deallocation is allowed, the excess granules are released. The FCB is then
converted back to contain a filespec consisting of the file name, name exten-
sion (if non-blank) and the drive number. This filespec can be used later to
re-open the file, provided a password is not required.

3.16. 442CH Kill the FCB's associated file. Conditions 3.1.4A, B and C
hold. The file associated with the FCB is killed in the same manner as for DOS
library command KILL (see section 2.27). The FCB is set to all zeroes.

3.17. 443pR Load a program file. Conditions 3.1.A and B hold except the
registers AF, BC and HL are altered and on exit HL (and 4403H - 44p4H (17411 -
17412 decimal)) contain the program's entry address. On entry, register DE
points to a FCB containing the program file's filespec. The load is done the
same as for DOS library command LOAD (see section 2.32).

3.18. 4433H Load and commence execution of a program file. Dead end
routine. On entry, DE points.to a FCB containing the program file's filespec.
Registers AF and BC are altered; all other registers are passed on unchanged to
the program when its execution begins. The file open, load and commence exe—
cution are done the same as when DOS executes a command that is not a library
command, excepting that there is no default name extension. If an error occurs
during the open or load, DOS exits to 44@9H. If DEBUG is active (see section
2.17), DEBUG is entered just before the program commences execution.

3.19. 4436H READ a disk sector or move a logical record from the FCB's
buffer to the caller's buffer. Conditions 3.1.A, B and C hold.

If bit 7 of the FCB's 2nd byte equals #, the sector represented by the high two
bytes of the NEXT field is read into the FCB's buffer and, if no error or if
error code 6 (sector read protected), the NEXT field is advanced 256 bytes. If
an error other than code 6 occurs, the NEXT field is not advanced, meaning the
user can retry to read the same sector.

If bit 7 of the FCB's 2nd byte equals 1, then a logical record of length equal
to the FCB's LRECL (where § means 256) is moved from the FCB's buffer to the
buffer pointed to by register HL on entry. As each byte is moved, the NEXT
field is incremented. When the FCB's buffer is empty, the next file sector is
automatically read into it and byte movement continues. Jf an error occurs,

3-7 DOS ROUTINES

including error code 6, the logical record move terminates, leaving NEXT
advanced for the number of bytes moved.)

If bit 1 of the FCB's lst byte equals 1, the NEXT and EOF fields are considered
RBA's within the diskette rather than within a file, thus giving the user the
capability to read a diskette, rather than a file. The use of bit @ of the
FCB's first byte is defined in section 3.2f below. DOS routines $P13H, 9p1BH,
44394, 443CH and other routines that indirectly read or write sectors also
operate as such if any of these two bits are on. The use of these 2 bits is
incompatible with TRSDOS.

One incompatibility between NEWDOS and TRSDOS occurs when the Program reads the
EOF from the FCB to determine the number of bytes in the file. However, in
many cases the user does not have to know what the EOF is. Instead, for both
TRSDOS and NEWDOS, the user can read the file sector by sector, waiting for
either of the two EOF errors. If the error code is 1CH (END OF FILE
ENCOUNTERED), then the file ends on a sector boundary and the last sector read
successfully was the file's last. If the error code was 1DH (PAST END OF
FILE), then the last sector successfully read was also the file's last, but was
only a partial sector with the value in FCB+8 equaling the number of bytes in
that sector belonging to the file. Remember, this is true for both TRSDOS and
NEWDOS; thus the same code can work for both.

3.20. 44398 WRITE without verify a sector to disk or move a logical record
from the caller's buffer to the FCB's buffer. Conditions 3.1.A, B and C hold.

IF bit 7 of the FCB's 2nd byte equals §, the disk sector as defined by the NEXT
field is written with the contents of the FCB's buffer. Unless VERIFY is on
(see section 2.48), verify read is not done. If no error, and if the lower
order byte of NEXT equals §, the NEXT field is advanced 256 bytes. Whether or
not NEXT was advanced, i1f NEXT now exceeds EOF or if bit 6 of the FCB's 2ad
byte equals @, EOF is set equal to NEXT. If an error occurred, NEXT is not
altered, thus allowing the user to retry 'to write the same sector.

If bit 7 of the FCB's 2nd byte equals 1, a logical record of length equal to
the FCB's LRECL (§ means 256) is moved from the caller’'s buffer, pointed to by
register HL on entry, to the FCB's buffer. With each byte's move, NEXT is in=-
cremented, and if NEXT now exceeds EOF or if bit 6 of the FCB's 2nd byte equals
#, EOF is set equal to NEXT. When the FCB's buffer fills, the buffer is writ—
ten to the appropriate disk sector with verify read and then the logical record
move continues, filling in the FCB's buffer for the next file sector. Whenever
an error occurs, the logical record move terminates, leaving NEXT advanced for
the number of bytes moved.

Bit 1 of the FCB's 1st byte functions as described in section 3.19. f bit 9
of that byte equals 1, then sectors are written protected (error code 6 on
sector read).

If a verify read is done after the write of a protected sector, error code 6 is
not returned to the caller as an error.

A significant incompatibility with TRSDOS lies in the fact that when a sector

DOS ROUTINES 3-8

'

¢ld ventaoining the] - © Churactor pre cf

8 byte logical routine narme fi
ight with blanks.

the routine, padded on the r

It a routine with the same name already exists in the queue, FILL ALRELDY
EXISTS error code is returned with HZ set. Otherwise the routine is enqueued,
and exit taken with Z state set. HL, DE, BC and AF are altered by this func-
tion. This function is new with NEWDOS/8§.

Subsequently, whenever a DOS command of the form *namel or “*namel,parameterc
is executed, DOS searches its queue for a routine named namel, sets HL point-
ing to the parameters, if any, and jumps to the routine's 13th byte. When the
routine concludes, it should exit via 4P2DH, 4409H, or 4@3PH. The routine nay
use all registers, and can use the two bytes at 44@3H - 4404H to receive or
pass back a parameter. If the logical routine namel does not exist in the
queue, FILE NOT IN DIRECTORY error code is returned with NZ set.

3.32. 4464H = *pname routine dequeue. HL points to a logical routine as
defined in section 3.31. If the routine is not in DOS's logical routine queue,
this function exits with FILE NOT IN DIRECTORY error code in register A and
with NZ set. Otherwise, the routine is dequeued, meaning that subsequent

- *namel commands naming it will abort, displaying FILE NOT IN DIRECTORY.
Registers HL, DE, BC and AF are altered by this function. This function is new

with NEWDOS/84.)

3.33. 44678 Send message to the display. Condition 3.1.A holds. The
message bytes pointed to by HL up to and including a @DH byte (EOL) or up to
but not including a @3H byte (EOM) are sent to the display.

3.34. 446AH = Send message to the printer. The same as 4467H except the
message is sent to the printer. '

3.35. 446DH Convert clock time to HH:MM:SS character format. The current
clock value at Model I locations 4@41E — 4B43H (Model III locations 4217H -
4219H) is converted to HH:MM:SS character format and stored in the 8 bytes
pointed to by HL. Registers AF, BC, DE and HL are altered. On exit, HL points
to the next byte after the HH:MM:SS field.

3.36. 447¢m Convert the date to MM/DD/YY character format. This routine
is the same as 446DH, except the date value at Model I locations 4P44H -~ 4Q46H
(Model III locations 421AH - 421CH) is converted to MM/DD/YY format.

3~11 DOS ROUTINFQ

3.37. 4473H Insert default name extension into filespec. If the file-
spec pointed to by register DE has no name extension, insert the 3 characters
pointed to by HL as its name extension. The resulting filespec cannot exceed
31 characters. Registers AF and HL are altered. '

3.38. 9P13H Read a byte from a disk file. This is DOS's single byte read
routine even though it starts in ROM. Conditions 3.1.A, B and C hold. If the
disk sector containing the NEXT byte of the file is not in the FCB's buffer, it
is read into there. The byte is then placed into register A for use by the
caller. The FCB's NEXT field is incremented.

3.39. ¢P1BH Write a byte to a disk file. This is DOS's single byte write
routine, even though it starts in ROM. Conditions 3.1.A, B and C hold. If the
disk sector corresponding to the FCB's NEXT position is not in the FCB's buf-
fer, it is read into the buffer, unless NEXT is on a sector boundary and is
equal to EOF. The byte in register A on entry is placed into the buffer, and
NEXT is incremented. If the buffer is now full, the sector is written to disk
as if a 443CH call.

3.40. 447BH For Model III omnly, performs the same function as call 441¢H
does for the Model I (seg section 3.8). For the Model III, 4419H must not be
used.

DOS ROUTINE 3-1z2

4. DOS FEATURES.

This chapter discusses DEBUG, MINI-DOS, CHAINING, DOS-CALL, JKL and asynchro-
nous execution. DEBUG, DOS—-CALL and asynchronous execution are primarily of
interest to machine language programmers and those interested in Z-89 code.
Other users should make a quick reading of DEBUG and DOS-CALL as they are fre-
quently referred to elsewhere in the manual. MINI-DOS and JKL can be used im-
mediately by everyone. CHAINING can be very complex; novice users will want to
test out the chaining concept by using the BASIC program CHAINBLD/BAS to first
inspect the sample chain file CHAINTST/JCL and then to create some elementary
chain files.

4.1. DEBUG Facility.

As an aid primarily for the machine language programmer but also for use by
higher level language programmers, NEWDOS/8¢ has the DEBUG facility for inter-
rupting current execution, inspecting memory, altering memory, inspecting disk,
altering disk, single step execution, etc.

DEBUG can be entered in three ways:

1. Simultaneously depressing the three keyboard keys 1, 2 and 3. 1In
order for this 123 action to work the follow conditions must be met.

1. SYSTEM option AB = N.

2. SYSTEM option AE = Y.

3. Either (1) interrupts are enabled or (2) the main program is
awaiting keyboard input via the standard keyboard imput routine and
SYSTEM option AJ = N.

4. DOS must not be currently using its overlay area (main memory
locations 4DPPH - 51FFH. ‘

5. DOS must not have its overlay inhibit enabled.

2. Executing either a RST 3¢H or a JP 449DH or a CALL 44¢DH 2z-8p
instruction. :

3. Automatically at, but before, a machine code program commences execu—
tion if DEBUG has been turned on via DOS command DEBUG (see section 2.17).

Upon entry, the DEBUG facility will (1) save all registers in the interrupted
program’'s stack, (2) use the next stack locations for its own operations, (3)
disable any stops that may have been set on its last exit, (4) display memory
using mode and locations as remembered from its last exit, and (5) display the
cursor in the lower right hand corner of the display to indicate that the DEBUG
facility is awaiting an input command.

All commands, even the single character commands, to the DEBUG facility must
terminate with ENTER. If an error is made in keying in a command but before
ENTFR is depressed, simply backspace over the incorrect characters and type in
the correct ones. If desired, the command may be purged before ENTER by keying

4-1 DOS FEATURES

shift left arrow.

Both the X and S displays display memory 16 bytes per display line, both in
S hexadecimal and in character format. If SYSTEM option AI = Y, character for-
.< mats will include lower case letters.

When DEBUG encounters an error condition, it displays 'ERROR' and waits for the
user to acknowledge the error which is done by pressing ENTER to clear the
error state. ’

The DEBUG facility commands are as follows. Wherever numeric values are used,
they are always hexadecimal values without the suffixed H unless otherwise
specified.

X The DEBUG facility shifts to X display mode, if not already there.
The X display contains 15 lines. The lst through 4th lines contain the
lst 64 byte memory area display. The Sth line displays the interrupted/
replaced contents of Z-8p registers AF, BC, DE and HL. The 6th through
9th lines contain the 2nd 64 byte memory area display. The 1fth line
contains the interrupted/replaced contents of 2-8p registers AF', BC', DE'
"and HL'. The 1llth through 14th lines contain the 3rd 64 byte memory area
display. The 15th line contains the interrupted/replaced contents of Z-8p
registers PC, SP, IX and IY. The displays for registers AF and AF' also
include a bit mask for the associated F register, with an alphabetic
character if the bit equals 1 (state set) and a - if the bit equals @
(state not set). The meanings of the bits (7 - @) are:

= minus sign

zero ‘

-unused bit

half-carry

unused bit

even parity or overflow
subtraction

carry

. ¢ s e
onwun

L]

W NN WEsVM O

.
[T~ R < - B NI T Y
b onu

Using the X display allows the user to track the registers and three sep-
arate memory areas at one time.

S - The DEBUG facility shifts to S display mode, if not already there,
using X display's lst memory area's base address rounded down to a 256
byte page boundary as the S display's base address. The S display dis-
plays 256 bytes of memory, using 16 display lines.

[n]Daddrl If in S display mode, the 256 byte block containing addrl is
displayed; if n is specified, the base address of the the specified area
is changed, but the display won't change since DEBUG is in the S display
mode. If in the X display mode, addrl becomes the base address for the
specified area: 1 if n not specified, 2 if n equals 2, and 3 if n equals
3. Examples:

1. D7psg displays the contents of locations 7f@@H - 79FFH if

DEBUG is in S display mode. If in X display mode, display area 1
. will display the contents of locations 7@8¢H - 7@BFH.

DOS FEATURES

o
4
3

2. 3DFFC$ 1If DEBUG is in X display mode, display arez 3 will display the
contents of locations FFCPH — FFFFH. If in S mode, the new area 3 address 1s
. remembered, but the display 1s not changed.

[n]l; f in S display mode and n not specified, the S display is ad-
vanced to the next 256 byte block. If in X display mode, the specified 64
byte display area is advanced 64 bytes: area 1 if n not specified, area 2
if n equals 2, and area 3 if n equals 3.

[n]- If in S display mode and n not specified, the S display is re-
tarded to the next lower 256 byte block. If in X display mode, the spec-
ified 64 byte display area is retarded 64 bytes: area 1 if not specified,
area 2 if n equals 2 and area 3 if n equals 3.

Maddrl The DEBUG facility shifts to § display mode, if not already
there, displays the 256 byte block containing addrl, enters modify mode
and displays a blinking cursor over the hex digit next to be changed.
Pressing a key # = 9 or A - F causes that hex digit to be replaced in
memory and the cursor advanced one position. Pressing right arrow or
space advances the cursor one position without memory change. Pressing
left arrow retards the cursor one position without memory change. Pres-
sing shift left arrow retards the cursor 4 hex digits without memory
change, and pressing shift right arrow advances the cursor 4 hex digits
without memory change. Pressing up arrow moves the cursor up one display
line without memory change, and pressing down arrow moves the cursor down
one line without memory change. The cursor cannot be advanced or retarded
outside the current 256 byte page. Pressing ENTER terminates modifiy

. mode. Any other key terminates modify mode and raises ERROR state.
Exanmple:

M6314 DEBUG is shifted to S mode, if not already there. The con-
tents of 63fPH — 63FFH are displayed, and a blinking cursor is dis-
played over the first hexadecimal digit of byte 6314H. The operator
may now key in replacement hexadecimal digits and/or move the cursor
around within the displayed 256 byte page.

®?laddrl][,hbl][,hb2]{,hb31[,hb4] Starting at main memory location
addrl, find an occurrence of the specified series of hexadecimal bytes.
hbl, hb2, hb3 and hb4 are each 2 hex digits representing a hexadecimal
byte. If any of hbl, hb2, hb3 or hb4 are specified, addrl must also be
specified. If nome of hbl, hb2, hb3 or hb4 is specified, then the series
of hexadecimal bytes last used by an F command is used. If addrl is not
specified, then the memory location +1 of the last F command match is
used, thus allowing the user to find successive occurrences of the initi-
ally specified byte string. Main memory is searched for am occurrence of
the search string of bytes. If found, the address of the first of the
matching bytes less 2¢H is made the X display's lst area's base address.

_ This causes the matching byte string to appear at the start of line 3 of
the X display. If not found, X display's lst area's base address is set =
@FFEfH. Example:

F5200,CD, 24,44 will start at main memory location 52fPH and
. search for the first occurrence of the three bytes mentioned. Subse-
quently, the command F will search for the next occurrence of the
— same three bytes.

4-3 DOS FEATURES

If a match takes places in the current stack area, it 1is possible that the

‘matching bytes will be gone from the stack before they can be displayed,

thus causing the user to think DEBUG has stopped erroneously. Further,
DEBUG stores the comparison copy of the bytes in the 51xxH region of mem-
ory; so if that area is searched, a match will be found upon the compare
bytes themselves.

I Execute the interrupted program's current instruction and then
re~enter the DEBUG facility. This allows the user to single step execute
the interrupted program. The user may then observe the changes (or havoc)
wrought by each instruction. Single stepping has some pitfalls however:

1. A full timer interrupt sequence may also execute during the single
step. ’

2. Single stepping is not allowed if the instruction location is less
than 52¢fH or jumps to or returns to a location less than 520¢H.

3. The DEBUG facility uses the Z-8f instruction RST 30H to trap for
the return to DEBUG after the single instruction has been executed.
Therefore, the single stepped instruction should not branch upon
itself and should not refer to the next byte following itself as the
source or destination of data.

"€ Performs identical to I except that if the single stepped instruc-

tion ig'a CALL, the entire called routine is executed during the so called
single step.

Rdreg,valuel Replaces the interrupted contents of double register dreg
with the value valuel. Examples: '

RDE, CAp$ replaces the previous contents of register DE with the
hexadecimal value Cfp§.

RHL',718# replaces the previous contents of register HL' with the
hexadecimal value 71¢6.

Ldnl ,drsl Relative sector drsl of the diskette mounted on drive dnl 1is
read into DOS's system sector buffer (Model I locations 42¢fH - 42FFH;
Model III locations 43@PH-43FFH). DEBUG then shifts into S mode and dis-
plays the sector's contents in that buffer. drsl is a decimal (yes, dec-
imal) value. The user is respomsible for providing correct values for dnl
and drsl as DEBUG makes no checks. Once the sector's contents are in the
buffer, the user may treat those bytes as normal main memory, may search

- them using the F command and may alter them by using the M command. How-

ever, altering the sector in the buffer does not alter it on the diskette;
the WR command must be executed to store the sector back onto the disk-—
ette. Since almost all NEWDOS/8@ system programs use the system sector
buffer for their diskette reads and writes, the user should not use the L
or WR commands if the interrupt took place in DOS (in this case the inter-
rupt address is usually below 52f#fH but be careful of COPY, FORMAT, etc.)
and he/she intends to continue the interrupted program's execution.
Warning !!! 1If passwords are enabled, commands L and WR will be rejected
and ERROR state entered. Example:

L1,15¢ loads the 151st sector of the diskette currently aounted

DOS FEATURES L4=4

on drive 1 into the system sector buffer.

WRdnl,drsl The contents of the system sector buffer (42pPH-42FFH on the
Model I; 43PPH-43FFH on the Model III) are written to relative sector drsl
of the diskette mounted on drive dnl. The parameter definitions and
restrictions in the use of command L also apply to command WR. If the
specified diskette sector is read protected, it is written read protected.
Warning!l! 1If you specify the wrong values for dnl and drsl, you will
write the buffer's data to the wrong sector and create for yourself a lot
of trouble. Be sure you know what you are doing!!! Example:

WR1,15¢ writes the current contents of the system sector buffer
to the 151st sector of the diskette currently mounted on drive 1.

Q Exit DEBUG to DOS READY. The previous program is forgotten. If
the system was in DOS-CALL or MINI-DOS, that state is purged.

Gladdrl][,addr2]{,addr3] ‘Restore the registers and resume program
execution. If addrl is specified, execution resumes at that location;
otherwise it resumes at the memory address specified in the PC register.
If addr2 is specified, a breakpoint is set for that location by replacing
the byte at that location with the single byte Z-8f instruction RST 3@H
which when executed will cause the DEBUG facility to be reentered. The
replaced byte is not lost (it is restored upon DEBUG re-entry), but it is
unavailable during the period from DEBUG exit until DEBUG entry. Addr3 is
a 2nd breakpoint address. When addr2 is specified, it is not required
that addrl be specified. Addr2 and addr3 must not be less than 520 0H.
Examples:

G799P,8409,8425 will set a breakpoint at main memory locations
' 849¢H and 8425H, and will restore the registers and commence program
execution at main memory location 7PPfH.

G will restore the registers and commence program execution at
the main memory location saved in the PC register. If the inter—
rupted program was awaiting input (such as DOS READY or BASIC READY)
at the time of interrupt, it is still awaiting input. Even though no
cursor is re-displayed (as DEBUG does not remember the cursor state),
the user may proceed with key input.

4.2, MIHI-DOS.

There are many times when, during the execution of a main program, the operator
would like to interrupt the main program, execute one or more of the DOS 1ib-
rary commands and then resume main program execution without any change having
occurred to the main program's state during the interruption. NEWDOQS/S89 pro-
vides such a facility, called MINI-DOS.

In order to use MINI-DOS the following conditions must be met:

4-5 DOS FEATURES

1. SYSTEM option AB = N,

2. SYSTEM optiom AF = V.

3. Either (1) interrupts are enabled or (2) the main program is awaiting
keyboard input via the standard keyboard input routine and SYSTEM option
AJ = Y, -

™

With these conditions satisfied, the simultaneous depression of the keys D, F
and G will cause the main program to be interrupted, its register state saved,
and MINI-DOS state to be entered. MINI-NEWDOS/8@§ READY will be displayed.
CAUTION, pressing DFG is not recommended while disk I/0 is in progress as a
fatal error to the diskette is possible; if exit from MINI-DOS is via MDBORT,
then there's no problem.

From MINI-DOS state, the operator may execute any of the DOS library commands
except APPEND, CHAIN, COPY and FORMAT. Non-library commands or programs may
not be executed under MINI-DOS.

When ready to return to the main program, enter the DOS library command MDRET.
If the cursor was displayed before DFG, it will be redisplayed. The main pro-
gram's register state is restored, and the main program resumes its execution.
If the main program was awaiting keyboard record input and a partial record was
already inputted, that partial record is still in the buffer even though it is
not displayed. If the main program was awaiting keyboard input, whether or not
any characters had been entered, upon exit from MINI-DOS, the main program 1is
still waiting. Don't be timid; start keying. If the main program was not
awaiting keyboard imput, it will go on about its business.

If the main program is not to be resumed, entering the DOS library command
MDBORT will terminate both MINI-DOS and the main program, with the system going
to normal DOS READY.

Though COPY may not be used under MINI-DOS, simple file copies can be done
using DOS library command MDCOPY. '

NEWDOS/88 is unable to eliminate all cases where the triple key depression
results in one or more of the keys being transmitted as input to the main pro-
gram. This is especially so when system option AJ = N. These spurious keys
usually show up on exit from MINI-DOS. The user should back space over thenm,
and should not use triple key depression when the main program is in text
overwrite mode. '

As an example of MINI-DOS use, start at DOS READY and execute the following:

BASIC
14 PRINT "HELLO": GOTO 1p
RUN

The BASIC program is now in an endless loop printing the word HELLO on the
display. Simultaneously press the D, F and G keys. The BASIC program's
execution is interrupted, and the message MINI-NEWDOS/8# READY appears on
the display. Now execute the following DOS commands:

DOS FEATURES 4-

DIR ¢
FREE
CLOCK
CLOCK,N
LIB
SYSTEM, @
PDRIVE,{
MDRET

The MDRET command caused the exit from MINI-DOS, and the BASIC program
continued execution where it was interrupted. Now, while we have a test
program executing, let's try out the entry to DEBUG. Simultaneously
depress the 1, 2 and 3 keys. Once again, the BASIC program's executilon is
interrupted. The DEBUG routine is now active, and the display is loaded
with either the X or the S DEBUG display format. Now type in G followed
by ENTER. DEBUG is exited, and the BASIC program continues execution.
Now, press DFG again. to get back into MINI-DOS. Once there, execute DOS
command MDBORT. This causes DOS to forget about the interrupted program,
to exit MINI-DOS and go to normal DOS READY.

. CHAINING.

The DOS commands CHAIN and DO are simply different spellings of the same com-
mand; therefore, in this section, only the command word CHAIN will be used
where in reality either one can be used.

For most TRS-8p users there are functions which use the same series of DOS
commands and/or program responses, and for each of these functions it would
save a lot of key stroking, operator time and errors if this keyboard character
sequence could be saved in a disk file to be called upon when the operator
wishes to execute a specific function.

For example, suppose that each time a reset/power-on is done, the operator
keys in the following commands and program responses:

© HIMEM,QESPHH Execute DOS command HIMEM

PROGRAM1 Execute program named PROGRAMI1

Y . : Response to PROGRAMl's lst query.

5@ Response to PROGRAMl's 2nd query.

PROGRAM2 Upon PROGRAM1'S completion, execute program
o ' : ’ PROGRAM2

- Response to PROGRAM2's lst query

WORKF1 - Response to PROGRAM2's 2nd query

WORKF2 Response to PROGRAM2's 3rd query

BASIC,RUN"BASPGM1/BAS" Upon PROGRAM2's completion, enter BASIC
o ’ and run BASIC program BASPGMl.
Y ; ‘ : Response to BASPGMl's lst query.

Subsequent input to BASPGM1 is assumed to vary from run to rum, is there—
fore not part of the standard sequence and of no concern here. What is of
concern is that this same sequence of keyboard input must be keyed in each
time.

47 DOS FEATURES

However, if this keyboard character sequence was placed in a disk file
named, for example, XXX/JCL, then this keyboard input sequence can be
triggered to occur by executing the DOS command:

CHAIN,XXX/JCL

. The execution of this CHAIN command (see section 2.9) causes keyboard
input to come from the file XXX/JCL, starting at the file beginning and
transmitting characters as keyboard input when requested by DOS or the
executing program. The characters are tramsmitted upon request until the
end of the file is reached, at which time keyboard input is switched back
to the normal keyboard. Thus, having keyed in the CHAIN command, the
operator may sit back and wait until after BASPGML has received its first
response instead of having to key in the various commands and responses as
needed.

Further, since this keyboard sequence is to be invoked at reset/power-on,

the operator may avoid even the keying in of the CHAIN command by setting

that command up beforehand as the AUTO command (see section 2.4). This is
done by executing the DOS command: '

AUTO, CHAIN,XXX/JCL

Now, when reset/power—on is done, the CHAIN command is automatically
executed, and the operator has nothing to do until after program BASPGML
has received its first response.

Both this process of causing keyboard input to be taken from a disk file and
the associated operational mode that NEWDOS/8p is in during that time is called

. chaining. The files that contain the keyboard character sequences are called
chain files.

NEWDOS/8p is not concerned with the creation of chain files; NEWDOS/89 only
uses them in response to a CHAIN command (see section 2.9). It is up to the
user to decide what keyboard character sequence is to be contained in a chain
file, and it is left to the user to build the chain files he/she needs.
Probably the simplest way is to use either SCRIPSIT or PENCIL and store the
resulting file in ASCII mode. For users that do not have either SCRIPSIT or
PENCIL, a BASIC program named CHAINBLD/BAS has been included on the NEWDOS/ 89
diskette to create and edit simple chain files. To build chain files having

other than printable keyboard characters, some other chain file build program
must be used.

Chain file creators must remember that, except for any /./ type chaining
control records (discussed below), the chain file must contain exactly the
keyboard character sequence that DOS or the current executing program expects.
Chaining does not guess for you.

During the processing of a chain file, NEWDOS/8§ operates in one of two modes,
depending upon the setting of SYSTEM option AT.

If SYSTEM option AT = Y, then all requests for keyboard inmput via the

standard keyboard routine are honored from the chain file. This applies
‘ to both a request for a record (such as INPUT or LINEINPUT in BASIC) and

DOS FEATURES -8

for a single character (such ar IRKEVS in DASIC).

I1f SYSTEM option AT = N, then only requects for full records (such as

INPUT or LINEINPUT in BASIC) via the standard keyboard routine at ROM

location PP4PH are honored from the chain file. Requests for a single
byte (such as INKEY$ in BASIC) are honored from the keyboard.

On the NEWDOS/8¢ Version 2 diskette the user has been provided with (1) the
BASIC program CHAINBLD/BAS with which the user can build simple chain files and
(2) a sample chain file named CHAINTST/JCL. The instructions for using
CHAINBLD/BAS are given in section 6.6. Eere, all we want to do is use
CHAINBLD/BAS to look at the chain file CHAINTST/JCL. With computer at DOS
READY, enter the follow responses:

BASIC RUN "CHAINBLD/BAS:§" stéit CHAINBLD/BAS executing

2 , chooses file load option

CHAINTST/JCL:§ filespec of file to be loaded into memory
L; list first page of chain file

; list next page of file

U return to edit menu

qQ return to main menu

5 exit 'from the program

- At each step, study carefully what is displayed. This chain file contains
a good example of commands, program Iresponses, and chaining control re-
cords. Don’t be alarmed at CHAIHBLD's 19 second initialization time.
Once you have carefully studied the chain file, exit back to DOS and exe-
cute the chain file using the DOS command:

CHAIN, CHAINTST:§

Since most chain character sequences are short, usually less than 19# char-
acters, it is a shame to allocate a full granule of 1289 bytes for each such

sequence. Therefore, NEWDOS/8p allows a chain file to be divided into sections
with the keyboard character sequence making up each section preceded by a sec—
tion identification record (see /./§ discussion below) excepting that the first
section of a chain file need not have a gsection ID record. If the chain file

section that is to be accessed by a CHAIN command is preceeded by a section ID

record, the CHAIN command must specify the section ID as well as the file.

During chaining, when either end of file or end of section is encountered,
NEWDOS/89 terminates chaining without notification and sets keyboard input back
to the normal keyboard routine. This also happens if either DOS command CHNON,N
or the chaining /./5N function (see /./ below) is executed. 1f the current
program was awaiting input, the operator will have no indication of this change
except that all activity will stop. Usually, the operator knows what will be

the first display after chaining terminates; so he/she is ready for it.

If a DOS recognized error occurs during chaining, chaining will be terminated
with the message CHAINING ABORT displayed to inform the operator.

1f the DOS command CHAIN is executed while chaining, chaining simply forgets
the previous file and starts chaining within the new file, which may well be
the same file and section as the previous one. CHAIN commands are not nested,
and there is no- RETURN function in chaining.

4-9 ' DOS FEATURES

DOS-CALL is legal during chaining.

During chaining, there are five ways to alter the sequence of keyboard
characters.

1. The current executing program may decide to execute a CHAIN or CHNON
command via DOS~CALL (CMD"doscmd" in BASIC).

2. A CHAIN command itself may be part of the chain file. However, for
the command to be executed, either DOS must be awaiting its next command
or the current program executing must be clever enough to detect the CHAIN
command record in its normal record processing and execute the CHAIN
command via DOS—CALL (CMD"doscmd" in BASIC).

3. An easier method is by having the chain file contain a /./4 type
chaining control record (discussed below) at the point where the change of
sequence is to occur. Using the /./ allows the chaining sequence to be
changed regardless of whether DOS or a user program is in control and the
sequence change takes place without notification on the display. The
limitation of this type of sequence changes is that chaining cannot shift
to a different file. ~

4. The DOS command CHNON (see section 2.1%) may be part of a chain file.
Remember, DOS must be awaiting its next command. If CHNON,N is specified,
chaining is deactivated (though the chain file is not closed and file
position is remembered for a subsequent CHNON,Y or CHNON,D command), and
keyboard input next comes from the keyboard. If CHNON,Y is specified and
DOS-CALL is active, chaining continues but the current DOS—-CALL level is
exited.

5. A /./5 type chaining control record (defined below) may be used in the
chain file instead of DOS command CHNON. The /./5S record function is exe-
cuted even if DOS is not awaiting its next command.

If the CHAIN command is executed via DOS—CALL (CMD"doscmd" in BASIC), the pro-
grammer must remember that DOS remains in DOS—CALL executing DOS commands from
the CHAIN file until either end of file, end of sectionm, command CHNON,N or
command CHNON,Y (see section 2.19) is encountered. Thus, if a program wishes
toactivate chaining but wants to process. subsequent chain input itself, then
the first characters of that chain file or chain file section must be either
CHNON,Y or CHNON,N.

Chaining has six control records that may be placed within a chain file. Each

of these records must start with either a one character or a 4 character iden-

tification sequence and must end with the EOL (ENTER) character. 1In NEWDOS/ 89

Version 1, only the one character record identification was used; in Version 2,
it is recommended that the four character record identification be used, as the
four characters are all printable and thus visible during chain file create or

edit. The record ID characters are not displayed during chaining. These con-

trol records cause chaining to perform the action described for each. For each
special record defined below, the four character record ID is given first fol-

lowed by the alternative one character ID value.

1. /./® or one byte = 128 (8f hex). This identifies a section ID

DOS FEATURES 4-10

record, which must be the first record of a chain section, unless the
first section within a file is to be unnamed. The rest of the record is
the section's ID which is used to match against a CHAIN command's section
ID, if it specifies one, or against the section ID specified in a /./4
chain control record. Subsequent file characters until EOF or until but
not including the next section ID record are all considered part of this
new section. Example:

[«] PEXXXXX identifies subsequent characters as belonging to
chain section XXIXXX.

2. /./1 or one byte = 129 (81 hex). This causes the rest of the
record to be displayed, and then the system waits for the user to press
ENTER before continuing. This is a built in pause function. Example:

/./1MOUNT WORK DISKETTE The message MOUNT WORK DISKETTE 1is
displayed followed by PRESS "ENTER" WHEN READY TO CONTINUE. DOS
then waits for the ENTER.

3. /-2 or one byte = 13# (82 hex). The rest of the record is
bypassed without further action. This allows the chain file creator/
maintainer to place comment records in the file for documentation without
them being displayed.

4, /./3 or ome byte = 131 (83 hex). The rest of the record is
displayed, but no pause is done. This allows the creator/maintainer to
display to the operator what is happening. Example:

/./3PHASE TWO COMPLETED The message PHASE TWO COMPLETED is
displayed. DOS does not wait but instead continues processing chain
file input.

5. [./4 or one byte = 132 (84 hex). The rest of the record is a chain
file section ID of 31 characters or less. The current chain file is
searched for a chain section whose section ID matches that specified in
the /./4 record. When found, chaining continues with the first character
of that section. If the section is not found, END OF FILE ENCOUNTERED
error is displayed and chaining is aborted. Example:

[« | 4XXXXX Sequential chain character processing shifts
within the current chain file to the chain section named XXXXXX (see
/./9 example above).

6. /./5 or the one byte = 133 (85 hex). The rest of the record is
either the character ¥, N or D. Using this one character parameter, a
CHNON function is performed. The advantage of using the /./5 function
rather than an actual CHNON command is that DOS does not have to be wait—
ing for its next command. The disadvantage is that the chaining state
change is more subtle. The /./5 function is not for the novice.

Examples: ' :

1. /./5N chainiﬁg is deactivated though the file is not

closed.
2. [./5¢ chaining remains active but the current DOS—-CALL

-level, if any, is exited.

4-11 DOS FEATURES

The novice chain file creator will find it easiest to use none of the chaining
control records described above. As experience is gained, try using the /.13
record to display & comment and the /./1l record to display a message and wait
for ENTER. Next, try using /./® records to divide a chain file into sections

and then the /./4 record to cause chaining to branch around within a chain
file.

The chain file creator/maintainer is responsible for assuring that chaining
does not create impossible situations for the system or user programs.

During chaining and if SYSTEM option BC = Y, the operator may terminate
chaining by holding down the up arrow key, or the operator may force a chaining
pause by holding the right arrow key, and may resume chaining by pressing
ENTER.

4.4 DOS-CALL.

NEWDOS/SﬁAalio&s any machine language program to call the DOS routine at 441 9H
(see section 3.11) to execute a DOS command or user program. This capability
is called DOS-CALL. BASIC uses DOS-CALL to execute the CMD"doscmd" function.

The calling program builds a DOS command in a buffer and terminates it with a
§DH byte. With HL pointing to the command, the DOS routine at 4419H (see
section 3.11) is called to cause DOS to execute the command after moving it to
its own buffer and converting lower case to upper.

If the DOS—CALL is executing a user program, DOS does not check for conflict
between the calling program and the called program. It is the responsibility
of both programs to avoid conflicts. An example of a user program executing
under DOS-CALL is the execution of SUPERZAP under BASIC through the
CMD"SUPERZAP" function. '

Furthermore, the registers cannot be used to pass parameters back and forth
between the calling and the called programs. On entry to the called program,
however, register HL does point to the command parameters. Also, the two bytes
at 44@83H - 44P4H may be used to pass a 2 byte parameter back and forth.

A user program activated under DOS-CALL may itself use DOS-CALL (be careful not
to overflow the stack). DOS-CALLs can be nested, with each call activating a
new DOS-CALL level.

Upon return from a DOS-CALL, the calling program must check for three states.
If Carry is set, an error has occurred that has already been displayed. If the
program is to continue execution, then it must decide what to ‘»n. If the pro-
gram is to terminate, it should exit via a jump to 4@3PH in case this program
was itself invoked by DOS—CALL, which will cause an exit to the next higher
calling program with C state set.

However, if the returned state is NZ and NC, a DOS error has occurred that has

not yet been displayed and the error code is in the right 6 bits of register A
(bits 6 and 7 equal §). If the calling program is to continue operationm, it

DOS FEATURES 4-32

can have the error message displayed by calling 44P9H with bit 7 of reglster A
= 1; otherwise it should exit via a jump to 4409H with bit 7 of register A = §.
This latter action will cause the error message to be displayed and the system
goes to DOS READY unless the calling program was itself invoked by DOS5-CALL, in
which case the error msg will not be displayed and an exit will be taken to the
next higher calling program with register A unchanged and NC and NZ states set.

If the returned state is NC and Z, then the called function completed normally.
Since all registers except AF are saved at DOS—CALL entry and restored at DOS-
CALL exit, the only way a parameter may be passed back is by using the two
bytes at 44@3H and 44P4H (17411 and 17412 decimal). Actually, the higher
unused bytes of the DOS command buffer, 4318H - 43674, can be used for com-
munication each way in DOS-CALL, but the programmer must understand that DOS
moves all commands into that buffer before executing them.

4.5. JKL.

NEWDOS/8§ bas a small routine for dumping the contents of the display screen to
the printer. This feature allows the operator to print information that would
otherwise be lost as soon as the display is used for something else.

In order to use JKL, the following conditions must be met.

1. System option AD = Y.

2. Either (1) interrupts are enabled or (2) the main program is awaiting
keyboard inmput via the standard keybaord input routine and system option
AJ = Y.

3. DOS must not be currently using its overlay area (main memory locationms
4DPPH ~ 51FFH).

4. DOS must not have its overlay inhibit enabled.

With these conditions met, the simultaneous depression of the keys J, K and L
will cause the main program to be interrupted, its state saved, and the con-
tents of the display dumped to the printer without any editing except that
implied by SYSTEM option AX. If the printer is not ready or drops ready, the
system will loop waiting for it and no message will be displayed to the
operator.

JKL will substitute a period for each display character that is non-printable
as defined by SYSTEM option AX.

Pressing the BREAK key will terminate the JKL function, except if the CPU is
hung waiting on the printer.

When the dump is completed, the interrupted program is resumed. The problem of
spurious input characters discussed in section 4.2 exists here as well.

In earlier versions of NEWDOS, the JKL routine was always resident in main
memory. In Version 2, the JKL routine was very reluctantly moved into a system
overlay program, thus making it unusable in certain circumstances where it was
usable before. For example, JKL can not be invoked from DEBUG.

4-13 DOS FEATURES

4.6. Asynchronous Execution.

NEWDOS/8@, like TRSDOS, allows for a very limited form of asynchronous exe-
cution. -This is accomplished by inserting a user interrupt routine into DOS's
25ms interrupt chain. The DOS routine (see section 3.8) at Model I location
44194 (Model III location 447BH) must be used to insert the routine ianto the
chain, and the DOS routine 4413H (see section 3.9) must be used to take the
routine out of the chain. Refer to these two sections for the required format
of the user interrupt routine and how it is invoked.

-

Again, the user is reminded that the use of user interrupt routines under
NEWDOS/8f is incompatible with that under TRSDOS.

DOS FEATURES 4-14

5. DOS BDDULES, DATA STRUCTURES, AHD MISCELLAHEOUS INFORMATIOH.

This chapter gives information about the modules on the NEWDOS/8p diskette,
about diskette directories and about File Control Blocks. The novice user
should read sections 5.1 and 5.4 and leave the other sections for anmother time.

s

5.1. Files required on each diskette used with NEWDOS/8§.

DIR/SYS 2 - 6 granules. Diskette directory. This file is required
on every diskette used with NEWDOS/8f as it contains the control informa-
tion about all files on the diskette. FORMAT or the format part of COPY
creates this file automatically, and DOS updates this file as necessary to
add, alter, or delete control information about files on that diskette.
The structure of the directory is given in section 5.6. Also see section
5.6.2 for correction to HIT sector code for DIR/SYS.

" BOOT/SYS 1 granule. Must occupy the first granule of every diskette.
On data diskettes this file serves only to reject an attempt to boot using
this diskette in drive §. On system diskettes, the first sector contains
the machine code for loading the DOS system from the drive @ diskette when
a power on, reset or jump to location @ occurs. On NEWDOS/8f system disk—
ettes, the 2nd sector is a duplicate of the first (required for booting on
the Model III), and the 3rd sector contains system control information set
up by the DOS commands SYSTEM and PDRIVE. FORMAT or the format part of
COPY creates this file automatically.

5.2. KEWDOS/83 DOS System Modules.

The DOS system consists of 14 program modules which execute from three areas.
The resident module SYS@/SYS resides in all the non-data areas from 4@9PH to
4CFFH. The modules SYS1/SYS through SYS5/SYS, SYS7/SYS through SYS9/SYS and
§YS14/SYS through SYS17/SYS all share the DOS overlay area 4DPPH - S1FFH (only
one module at a time can be in that area). SYS6/SYS executes from both the
overlay area and the 52¢9H - 6FFFH area.

SYS§/SYS 3 granules. DOS's resident module loaded by the bootstrap
routine and remains permanently in main memory, except for the DOS ini-
tialization routines in the overlay area which are overlaid when no longer
needed. SYSP/SYS handles DOS initialization, disk I/0, clock interrupts,
load of other system modules, keyboard intercept, etc.

SYs1/sys - 1 granule. Interrogates DOS commands.
ASYSZ/SYS 1 granule. Creates files, opens FCBs, alloctes file space,

allocates FDEs, encodes passwords and loads users programs to be run.
Executor for library commands RENAME and LOAD.

5-1 DOS MODULES

SYS3/s¥s 1 granule. Closes FCBs, kills files, insert/deletes entries
from 25ms chain. Executor for library commands BLINK, BREAK, CLOCK,
DEBUG, JXL, LCDVR, LC, VERIFY and most of PURGE.

SYS4/SYS 1 granule. Displays DOS error messages.

SYSS/SYS 1 granule. DEBUG facility.

SYS6/SYS 7 granules. Executes in 4DPPH — 6FFFH. Executor for library
commands FORMAT, COPY and APPEND.

SYS7/SYS 1 granule. Executor for library commands TIME, DATE, AUTO,
ATTRIB, PROT, DUMP, HIMEM and the lst part of PURGE, SYSTEM and PDRIVE.
SYs8/sYs 1 granule. Executor for library commands DIR and FREE.
SYS9/sYS 1 granule. Executor for library commands BASICZ, BOOT,

CHAIN, CHNON, MDCOPY, PAUSE and STMT. Enqueues and dequeues user logical
routines and routes each invocation (see DOS routines 4461H and 4464H in

chapter 3).

SYS14/SYS 1 granule. Executor for CLEAR, CREATE, ERROR, LIST, PRINT
and ROUTE.

SYS15/SYS - 1 granule. Executor for FORMS and SETCOM.
SYS16/SYS 1 granule. Executor for most of PDRIVE.

SYS17/sSYS 1 granule. Executor for WRDIRP and most of SYSTEM.

5.3. NEWDOS/ 8§ BASIC Modules.

NEWDOS/8@'s Disk BASIC enhancements to the TRS-8f's ROM BASIC consists of a
main resident module and 8 overlay modules. The modules SYS1$/SYS through
SYS13/SYS and SYS21/SYS execute from DOS's overlay area, 4D@PH - 51FFH. The
modules SYS18/SYS through SYS2@/SYS execute from BASIC's overlay area, 52f¢H -
56FFH. All of BASIC's modules, except BASIC/CMD, are loaded as needed and must

be on the system diskette when needed.

BASIC/CMD 4 granules. Resident module residing in 57¢PH and up. Exe-~
cutes Disk BASIC's functions. This module need not reside on the system
diskette as it may be invoked from a data diskette (like amy other pro-
gram), and once invoked, it is not needed again until BASIC is next
invoked. :

SYS13/SYS 1 granule. Displays BASIC's error messages and executes lst
part of RENUM. Must be on the system diskette whemever BASIC 1s active.

SYS12/SYS 1 granule. Executes BASIC direct command REF. Must be on the
system diskette if REF will be executed.

DOS MODULES 5-2

5.4,

§¥S11/8%YS 1 granule. Executes BASIC dirccet! cormand RENUM. Must be on
the system diskette if RENUM will be executed.

5YS1p/SYS 1 granule. Executes BASIC statement's GET and PUT, and must
be on the system diskette if either statement is to be executed.

SYS18/SYS 1 granule. BASIC direct statement executor. Must be on the
system diskette whenever BASIC is active. '

SYS19/SY¥S 1 granule. Executor for BASIC statements LOAD, RUN, MERGE,
SAVE and CMD"F"DELETE. Must be on the system diskette whenever BASIC is

active. :

SYS2¢/sYS 1 granule. Executor for a number of disk BASIC statements and
usually is the module resident when BASIC is executing a program. Must be
on the system diskette whenever BASIC is active.

5YS21/SYS 1 granule. Executor for CMD"0" and must be on the system
diskette if CMD"O" will be executed.

Other Modules on the NEWDOS/8¢ diskette.

DIRCHECK/CMD A program that checks the directory for errors and list or
prints the directory contents. See section 6.4.

EDTASM/CMD An editor/assembler for Z-8f code-source and object code
from/to disk or tape. See section 6.5.

DISASSEM/CMD A program that disassembles Z-8§ machine code. See
section 6.2. ' ,)

LMOFFSET/CMD A program that reads load modules from disk or tape and
writes them to disk or tape. The program optionally (1) assigns new load
addresses, (2) appends a pre-execution move—-program—to-execution-location
appendage and (3) prepares the program to run without DOS. See section
6.3.

SUPERZAP/CMD A program that allows inspection and modification of
either disk or main memory. Disk operations are diskette or file
oriented. See section 6.1.

CHAINTST/JCL A sample chain file created by CHAINBLD/BAS.

CHAINBLD/BAS = A BASIC program that creates and edits simple record
oriented chain files for subsequent use via the DOS commands CHAIN or DO.
See section 6.6.

ASPOOL/MAS H. 5. Gentry's automatic spooler program as modified by
Apparat for NEWDOS/8f. See section 6.7.

5~3 DOS MODULES

5.5. Reduced Sized Systems.

Reduced sized systems can be created, if passwords are disabled, by COPYING the
full NEWDOS/8@ diskette onto a new diskette and then KILLING the unwanted
files. A minimum system to handle open's and close's will consist of 1P gran-
ules (BOOT, DIR, SYSP-SYS4). If the DEBUG facility is to be used (including
BASIC's CMD"D"), add SYS5. Section 5.2 indicates which additional modules must
be added for the various DOS library commands. If BASIC is to be used, section
5.3 indicates which BASIC modules must be added, and section 5.2 indicates
which DOS modules must be added if DOS library commands are to be executed via
BASIC's CMD"xx" statement.

If the system module loader finds the module's directory entry inactive or
encounters an error during loading, then one of the following occurs:

If SYS4 is an acﬁive module in the system, then SYSTEM PROGRAM NOT
FOUND error will be displayed via a jump to 44@9H.

If the jump to SYS4 via 44P9H finds SYS4 not in the system, then the
Z-8¢ HALT instruction is executed which on the Model I causes reset
and on the Model III stops the computer (the operator must manually
press reset).

Modules included in this category are SYS1/SYS thru SYS21/SYS. If any of
BASIC overlay modules fail load, the user must carefully execute BASIC *
to get back the basic program text.

CAUTION!!! Once a system file has been killed from a system diskette, it can-
not be restored by simply copying it from another system diskette. The DOS
system loader requires that system file FPDEs be in specific FDE slots in the
dircetory and that all of a system file's space be accounted for in the first
extent element. Further, SYS#/SYS must occupy the same granules as it did
before kill, and it is recommended for efficient system operation that all
other system files also occupy the same granules. Once the FPDE has be pro-
perly reconstructed, DOS command COPY can then be used to copy the file's
contents.

5.6. Diskette Directory Structure.

For the Model I, NEWDOS/8p and TRSDOS diskettes are interchangeable provided
the NEWDOS/8@ diskette's directory consists of only 2 granules (see DDGA
parameter of FORMAT, section 2.22, and COPY, section 2.14), and is set up for
1P sectors/track, 2 granules/lump and 5 sectors/granule operations (5 sectors
per granule is standard for NEWDOS/8@). The files on the diskettes may not be
operationally interchangeable between the two systems; system modules, BASIC,
ELECTRIC PENCIL, SCRIPTSIT, etc., definitely are not though the files they
manipulate are.

For the Model III, the directories of NEWDOS/88 and TRSDOS diskettes are NOT

compatible; a TRSDOS Model III diskette may not be used directly with NEWDOS/89
and NEWDOS/88 diskettes may not be used directly with TRSDOS Model III. If the
NEWDOS/ 89 single density diskette has a directory of Model I standard position

DOS MODULES

54

and size, the Model 1I1 TRSDOS has a conversion program to copy the cdata te a
Model ITII diskette. The COPY function of NEWDOS/8¢, Version 2, also has a way
of copying one, some or all files of a Model III TRGSDOS Version 1.3 or higher
diskette to or from a HEWDOS/8f diskette (see sections 12.1 and 2.14).

NEWDOS/8¢ makes all FDE's of a diskette, except those for BOOT/SYS and DIR/SYS,
available for use; thus, a 2 granule directory on a newly formatted data disk—
ette has 62 FDEs available. NEWDOS/8f allows the directory to be allocated
with up to 6 granules during diskette formatting (see DDGA parameter of PDRIVE,
FORMAT and COPY), thereby providing for a maximum of 222 available FDEs.

A diskette's directory always starts on a lump boundary and contains the GAT
sector followed by the HIT sector followed by 8, 13, 18, 23 or 28 FDE sectors,
depending upon the number of 5 sector granules allocated to the directory (see
the DDGA parameter of PDRIVE, FORMAT and COPY). The user is encouraged to
study the directory structure by use of program SUPERZAP (see section 6.1).
The starting lump number of the directory is always contained as a hexadecimal
value in the 3rd byte of each diskette's lst sector; this value is used by DOS
to find the directory.

S.6.1. The GAT (Granule Allocation Table) Sector.

The GAT sector is the first sector in the directory and contains the
following information: .
{

Granule free/allocated table. Each of relative bytes @fH - 5FH
corresponds to a lump and contains the free/allocate status bits for
all of that lump's granules. The number of granules per lump is
specified by the GPL parameter of PDRIVE and is a value between 2 and
8. The lump's lst granule's bit is bit § (counting from the right),
the 2nd granule's bit is bit 1, and so on up to the 8th granule. If
the bit equals P, the granule is free. If the bit equals 1, the
granule is allocated or nom-existent.

Granule existence table. Relative bytes 6fH — BFH correspond to
relative bytes §ff - SFH. If a bit within a byte equals §, then the
corresponding granule for that lump exists and is useable. If the
bit equals 1, the corresponding granule does not exist, must not be
used and the corresponding bit in #f - 5FH must equal 1. Actually,
though NEWDOS/8# creates these existence bytes during format, it does
so only for compatibility with the old style TRSDOS diskettes (where—
in these bytes were known as lockout bytes). Actually, NEWDOS/ 8¢
never sets a granule non—existent. When necessary, the granule exis-
tence table is discarded altogether to make additional GAT sector
bytes available to the granule free/allocated table.

In order to maximize the amount of diskette space controlled by the
GAT sector, NEWDOS/8f Version 2 allows the freefallocated section of
the GAT to extend through, and thereby replace, the existence (or
lockout) portion of the GAT. In this case, the free/allocated status
bytes are GAT relative bytes @fH through BFH instead of §fH through
SFH as discussed above. This extension is automatically done during
format if the number of lumps for the diskette exceeds 6§H (96
decimal). .

5-5 DOS MODULES

DOS

The diskette's encoded password is in relative bytes CEH - CFH.
The diskette name is in relative bytes DfH - D7H.

The diskette date is in relative bytes D8H - DFH.

/2
If a system diskette, the AUTO command to be used at reset 1is
contained in relative bytes EPH - FFH. 1If the first byte of this
area is PDH (EOL), then no AUTO command exists for this system
diskette.

S5<6.2. The HIT (Hash code Index Table) Sector.

The HIT sector is the 2nd sector in the directory. It serves as an index
into the FPDEs for the diskette's files and also serves to indicate which
FDEs are free and which are in use. If a HIT sector byte equals @, the
corresponding FDE either doesn't exist or is free. If a HIT sector byte
is non-zero, the corresponding FDE is in use, and if in use as a FPDE, the
HIT sector byte's value is a hash code formed from the contents of the
FPDE's 6th through 16th bytes (the name and name extension). Thus, when
it is necessary to look up a file in the directory, the hash code is
computed and the HIT sector searched for a match. If a match is found,
the corresponding FDE sector is read and the corresponding FPDE tested for
matching name and name extension. If this match fails, the HIT sector
search 1s continued. '

The relative position of the HIT byte within the HIT sector is exactly
equal to the corresponding FDE's DEC code; for it is by using the DEE code
as an index into the HIT sector that the system knows which HIT byte to
set non-zero when a FDE is allocated and to set to zero when a FDE is
freed.

The HIT sector's 32nd byte is used differently in NEWDOS/8¢ than all the
other HIT sector bytes. This byte contains the count of extra FDE sectors
allocated to the directory; the legal values are #, 5, 1§, 15 and 20.

This value is set up when the diskette is formatted.

On old Model I diskettes the value of the HIT sector byte for DIR/SYS (2nd
byte of the HIT sector) was 2CH which is not the correct value. This
incorrect value causes FILE NOT IN DIRECTORY error to appear when the
directory file itself is being accessed. For such diskettes, use SUPERZAP
to put the correct value of C4H into the HIT sector 2Znd byte.

5.6.3. The FDE (File Directory Entry) Sectors.

The rest of the directory's sectors are FDE sectors, with each 256 byte
sector containing eight 32 byte FDEs. A FDE is free if bit &4 of its lst
byte equals @ and in use if the bit equals l. An in-use FDE is a FPDE if
bit 7 of its lst byte equals f§ and a FXDE if the bit equals 1. When an
FDE is freed, only the 4th bit of the lst byte is zeroed and the corres-
ponding HIT sector byte is zeroed. UNothing else is changed. However, the
user may zero the entire 32 bytes oY each unused FDE by using the C func-
tion of DIRCHECK, thus obtaining a ileaner looking directory.

MODULES S-a

5.7. FPDE File Primary Directory Entry. Each file, wher created, 1s

. assigned a directory enctry somewherc in the FDE sectors. This entry contains:
lst byte:
Bit 7 = f. Indicates FPDE, vice FXDE.
Bit 6 = 1. If a system file.
Bit 5 = §. Undefined.
Bit 4 = 1. Indicates FDE allocated to a file.
Bit 3 = 1. If the file has the invisible attribute.

Bits 2 - #. Access level code (see PROT parameter of ATTRIB,
section 2.3).

2 byte:
Bit 7 = . The file may be allocated more space when necessary.
Bit 7 = 1 prohibits this. DIR, ATTRIB, CREATE and the DOS file space

allocation routine use this bit.

Bit 6 = §. The DOS file close function may deallocate any excess

granules above the EOF (i.e., apparently not being used by the file).
Bit 6 = 1 prohibits this. DIR, ATTRIB, CREATE and DOS file close use

this bit.

Bit 5 = 1. At least one sector of the file has been written to,
either new data or updated data, since the last time this bit was set
to #. DIR, ATTRIB, CREATE, PROT, COPY and the DOS sector write

. routine use this bit.

— Bits 4 to #. Undefined and reserved for future definition.
3rd byte = #. Currently undefined and reserved for future definition.

4th byte. The lower order byte of the file's EOF. This value is the EOF
position within the EOF sector. See FCB 2fth byte below.

5th byte. - The logical record length (LRECL) (§ = 256) in bytes. When a
file is created via a 442PH vector call, the value from register B is
stored here. When an existing file is opened, even as a new output file,
this value is not updated. This value is never used in NEWDOS/8p. The
value stored in FCB+9 at open time is that from register B, not from the

FPDE.

6th-13th bytes. The file name, padded on right with blanks if necessary.

14th-16th bytes. The file name extension, padded on right with blanks as
necessary. :

17th-18th bytes. The encode of the updaté password.
19th-2fth bytes. The encode of the access password.
. 21st byte. The middle order byte of the EOF.

22nd byte. The high order byte of the EOF. The 4th, 2lst and 22nd

5=7 DOS MODULES

bytes are
format as

a 3 byte EOF value. This EOF value, instead of being in RBA
are the EOF and NEXT fields of the FCB, is maintained in the old

TRSDOS format which has the following rules:

If the lower order byte of the EOF equals #, the EOF is in RBA
format,

If the lower order EOF byte is not §, then the EOF value in the
FPDE is equal to the actual RBA value plus 256 (the high two
byte value of the EOF is incremented by 1).

NEWDOS/8f maintains the directory FPDE EOF field in this manner in
order to maintain compatibility with the old Model 1 TRSDOS 2.3
diskettes (see section 12.1). New EOF values for a file are placed

into
Thus,

the FPDE only during file~create, write—~EOF and DOS close.
if the system fails requiring reset, the user can expect that

any file open for output at the time of failure will contain the new

-data

but usually not the new EOF.

Seé section 12.1 for EOF and NEXT incompatibility with other DOSs.

23-3fth bytes. Four 2 byte pairs (extent elements), each specifying a

contiguous

area of the diskette assigned to this file. The format of an

extent element is:

lst byte:

255 (PFFH) means the end of the extent elements for this file.

254 (PFEH) means the next byte contains the DEC for the first or
next FXDE assigned to this file.

§ — 253 (P - PFDH) equals the number of the diskette's lump in
which the area starts. Other considerations including the
number of lumps the GAT sector can handle limit this value to
the range § - 191. This value is also the relative location
within the GAT sector of the byte associated with this lump.

2nd byte (when the lst byte is less than 254)

31-32nd by

DOS MODULES

left 3 bits equals the number of granules ($-7) from the start
of the lump to the start of the area.

right 5 bits equals the number less ome of contiguous granules
assigned to this area.

tes. An extent element whose lst byte is either 255 or 254.

5-8

5.8. FXDE File Extended Directory Entry.

When a file has more than 4 space areas assigned, the additional extent
elements are contained in FXDE's assigned to the file. The format of a FXDE
is:

l1st byte. Bits 7 and 4 are both 1 to indicate a FXDE; all other bits
of the byte equal 4.

2nd byte. The DEC for previous FXDE or FPDE of this file. This is a
backward chain. The previous entry's 3lst byte will be 254, and the 32nd
byte will contain the DEC of this FXDE.

BYtes 3-22. Unused and should equal §.

Bytes 23-32. Are as defined for the FPDE.

5.9. FCB . File Control Block. Also known as a DCB (Data Control Block)
or an I0B (input/output block). ’

In order that file information be read from or written to a diskette, a link
must be created between that file and the user program. The link is created by
the DOS open function (see sections 3.13 and 3.14) and dissolved by the DOS
close function (see section 3.15). During the time the link is in existence,
the control information for that link is maintained in a 32 byte area of main
memory known as a File Control Block. At open time, the user specifies where
in user memory this FCB is to be. While this link is in existence, the FCB's
area of main memory must not be used for any other purpose. DOS does not re-
member where the FCBs are. The user informs DOS of which FCB to use for each
function that is to use a FCB. Thus, the link is effectively dissolved by
simply never using the FCB again in a function call or by using the FCB in the
open of a new link. Remember though, if writing to a file where the EOF is
being changed, either a a DOS close or DOS write—EOF (see section 3.28) func-
tion must be done to assure the EOF is properly placed in the FPDE.

At open time (a call to DOS 442@H or 4424H), the caller provides in register DE
the address of a 32 byte main memory area for use by the system as a FCB while
the file is open. The user must have placed the filespec (terminated by a @DH
or P3H byte) for the desired file into the FCB's lst bytes, and the DOS close
function will attempt to put it back there when done. NEWDOS/8f9 will accept
the Model III TRSDOS 5§ bytes area but only uses the first 32 bytes. While the
FCB is open, the format for the 32 byte FCB is:

lst byte:
Bit 7 = 1. The link is in existence (i.e., an open has been done).

Bit 7 = §. The link is not in existence (i.e., either an open has
not been done or a close has been subsequently done).

Bits 6-2 = §. Undefined.

5-9 DOS MODULES

DOS

HMODULES

Bit 1 = 1. The value in the FCB's NEXT and EOF fields are RBAs with-
in the diskette, rather than the file. This allows the user to I/0
directly to diskette sectors, bypassing the file concept altogether.
This bit should never be 1 during byte I/0 via the PPl3H or §P1BH
calls.

Bit § = 1. Sectors written to the file are written read protected in
the same manner as DOS writes directory sectors. This bit should
never be 1 during byte I/0 via the #@13H or PPIBH calls.

2nd byte:

Bit 7 = 1. Either single byte operations or logical record opera-
tions (record length in FCB's 1@th byte) are being done via this FCB.
NEXT value is maintained at the next byte to be read or written.

This bit is set to 1 at open time if register B is not §. It is also
set to 1 whenever byte I/0 is done via the PP13H or PP1BH ROM calls.

Bit 7 = §. Read and write operations are by full 256 byte sectors
with the FCB's NEXT value incremented 256 bytes upon the completion
of each successful I/O.

Bit 6 = f. The FCB's EOF value is to be set equal to the FCB's
resulting NEXT value on every successful write operation.

Bit 6 = 1. The FCB's EOF value is to be set equal to the FCB's
resulting NEXT value only for those successful write operations
resulting in the NEXT value exceeding the current EOF value.

Bit 5 = §. The FCB's buffer contains the current file sector's data.
If bit 5 = 1, the buffer does not contain the current file sector's
data; if needed, that sector's data must be read into the buffer.

Bit 4 = . The FCB's buffer does not contain updated data not yet
sent to the file. If bit 4 = 1, the buffer does contain updated data
not yet sent to the file. During DOS close, if this bit is 1, the
sector data in the buffer is automatically written to disk. This
updated data is also written on every 443FH and 4451H call and on
every 4442H, 4445H, 4448H and 444EH call that positions the file
within a different sector.

Bit 3 = 1. This FCB is in the NEWDOS/8@ Version 2 format for the
18th - 32nd bytes. This bit is set to I by DOS open. If bit 3 = §,
the FCB is in the old format and is illegal in NEWDOS/8¢ Version 2.

Bits 2 - §. Access level code (see PROT parameter of ATTRIB, section
2.3).

3rd byte:

Bits 7 - 5. These bits are defined the same as those in the FPDE 2nd
byte (see section 5.7). If bit 5 equals @, the DOS sector write
routine sets the bit to 1 in both the FCB and the FPDE just before it
actually writes the curr=nt sector to disk.

-10

wn

Bits &4 - $. Undefined and reserved for futurc definition.

4-5th bytes. The maln memory address of tne FCBZ's buffer. The user
determines where the buffer is to be and puts this address 1nto register
HL before the call to the DOS open routine. Sectors are read from disk
into this buffer and written to disk from this buffer.

6th byte. The low order byte of the FCB's NEXT field. This is the rela-
tive position within sector value. See discussion for FCB 12th byte
below.

7th byte. The relative number of the drive containing the diskette con-—
taining the file.

8th byte. The DEC code of file's FPDE. After the FCB is opened, this DEC
code is the link between the open FCB and the file's directory information
as the FCB itself no longer contains the filespec.

9th byte. The low order byte of EOF. This is the relative postion within
the EOF sector. See discussion of FCB l4th byte below.

1pth byte. The logical record length (LRECL) (P = 256) for records of
this file. This value is supplied in register B by the caller at open
time. If not § at open time, bit 7 of the FCB's 2nd byte is set to 1, and
subsequent DOS sector read or write calls must contain, in register HL,
the address of the logical record to be moved to the FCB's buffer (write)
or filled from the FCB's buffer (read).

11th byte. Middle order byte of the NEXT field.
12th byte. High order byte of the NEXT field. The 12th, 1llth and 5th
bytes form a 3 byte RBA within the file of the next byte to be processed,
either input or output.

For single byte and logical record 1/0, DOS maintains the FCB NEXT
field in exact RBA format.

For full sector 1/0, DOS also maintains the NEXT field as an exact
RBA, but there are subtle actions by DOS that can give trouble if the
user is not aware of them. DOS does not change the lower order byte
of the NEXT field during full sector 1/0. Normally, this byte 1is
zero, and that's fine. However, the user can set this byte non—zero
or if the previous I/O dome was in single byte or logical record mode
the lower order byte will probably be non-zero. The user must be
aware of the following rules:

During full sector reads, all three bytes of NEXT participate
the EOF check just as for single byte and logical record reads.

During full sector write, when the low order byte of the NEXT
field is non—zero, the NEXT field is not advanced 256 bytes
upon the successful completion of the write and EOF, if it is
updated, assumes that non-advanced NEXT value. The rationale
here is that if the NEXT field's lower order byte is zero, the
value of NEXT after the successful write is to be at the first

5-11 DOS MODULES

pos

byte of the next sector, but if the NEXT field's lower order
byte is non-zero, the value of NEXT after the successful write
is to remain within the sector just written.

See section 12.1 for discussion of NEXT and EOF field incompatibility
with other DOSs.

13th byte. Middle byte of the EOF field.

14th byte. The l4th, 13th and 8th bytes form 3 byte RBA within the file
of the end-of-file (the lst byte beyond the file's last data byte). This
value is initialized from the FPDE at open time, and is updated at sector,
logical record or byte write time under control of the FCB 2nd byte, bit
6. See section 12.1 for discussion of NEXT and EOF field incompatibility

with other DOSs.
15-22th bytes. Identical to 23-3fth bytes of FPDE.

23-24th bytes. For the current FXDE whose 4 extent elements are in the
FCB 25th - 32nd bytes, the number in this field represents the relative

" granule number of that FXDE's lst extent's lst granule. If that value
equals @FFFFH, then no FXDE is represented in the 25th-32th bytes.

25-32nd bytes. Identical to 23-3fth bytes of the current FXDE, if any.
Discussion of FCB bytes 17-32:

The definition for FCB bytes 17 to 32 has changed from what it was in
NEWDOS/8p Version 1 and Model I TRSDOS. It was assumed that very few
user programs ever referred to these bytes as they serve only to re-

duce the number of directory accesses done by the resident DOS. How-
ever, some users (such as the old SUPERZAP coded in BASIC) have made
use of the old definitions to get around having to open a file when
diskette, rather than file, I/0 was wanted. NEWDOS/8p Versions 1 and
2 have provided a diskette, as opposed to file, I/0 method (see FCB
lst byte, bit 1 definition); that method should be used and those old
pseudo FCB methods MUST be discarded to run with NEWDOS/8) Versiom 2.
Failure to do so could be catastrophic; NEWDOS/8p Version 2 has
activated bit 3 of FCB 2nd byte in an attempt to head off these bad
pseuds FCBs.

This change to the FCB 17-32nd bytes allows the FCB to contain all of
a file's extent information for any file having 8 or less extents
(DIR with the A option will display how many extents a file has). If
the file occupies contiguous diskette space, 8 extents is enough for
approximately 309,009 bytes (or 279,999 bytes if the directory is
spanned by the file's space).

If the file has more than 8 extents, meaning that more than one dir-
ectory FXDE is assigned to the file, then the FCB contains space
information for the file's lst 4 extents and the 1 to 4 extents of
the FXDE last having a sector read or written. It is quite possible
for large randomly accesssed files to require a lot more directory
accesses than was done under NEWDOS/8f, Version 1.

MODULES s-12

6. ADDITICKAL PROGRAKS SUPPLIED OR NEWDOS/S) DISKETTE.

6.1. SUPERZAYP.

Program SUPERZAP/CMD provides the user with the means to read and write stand-
ard 256 byte diskette sectors or any part of main memory, except writing to
ROM. Learning to use SUPERZAP is strongly recommended for all NEWDOS/8P
owners. If corrections (known as zaps or patches) are to be made to your
NEWDOS/8@, Apparat will distribute them in written form for application using
SUPERZAP. You must know how to us DFS and MODxx. In learning to use SUPERZAP,
do your learning on a diskette having data that you can afford to losell!lll!

Certain diskettes are written in non—standard sector formats and are thus inac-
cessible to SUPERZAP. There exist other programs that read anything that is on
a diskette, but do not have some of the other SUPERZAP features. The user, at
some time, will probably want to buy one of these other programs from the ven-
dors that sell them.

SUPERZAP operates in both upper and lower case.

Where numeric values are inputted and unless otherwise specified, SUPERZAP
assumes DECIMAL unless the value is suffixed with the character H to indicate
hexadecimal.

6.1.1. Function Modes. The menu displays the functions available. The
user keys in the selected function's characters and then presses ENTER. The
SUPERZAP functions are as follows:

DD . Display a Disk sector. SUPERZAP will ask for the drive number and
the number of the relative sector within the diskette, read the sector and
display it. ~ :

DM Display a 256 byte page of main memory. SUPERZAP will ask for a
memory address, truncate it to a 256 byte boundary and display the page.

DFS Display a File's Sector. SUPERZAP will ask for the file's file-
spec. Next, SUPERZAP will ask for the relative sector number within the
file and will display that sector.

DTS Display track's sector. SUPERZAP will ask for the drive number,
track number and the number of the relative sector on the track. It will
- then read the sector and display it.

DMDB Display Memory Dump Block. SUPERZAP will ask for the filespec of
the memory dump file (created by DUMP, see section 2.28). It will display
the dump's base address. Next it will ask for a main memory address with-
in the range of the dump, truncate it to a 256 byte boundary and display
the memory page. E

VDS = Verify Disk Sectors. SUPERZAP will ask if the operator wants a

pause when a read protected sector is encountered. Next, SUPERZAP will
ask for the drive number and the number of the relative sector on the

6—-1 ADDITIONAL PROGRAMS

diskette of the lst sector to be verified. Lastly, it will ask for the
number of sectors to be verified. It will then proceed with the verify
which consists simply of reading each sector within the range specified.
When a protected sector is encountered and if a pause was requested,
SUPERZAP will display the sector's location and wait for the operator to
press ENTER before continuing. VDS is a fast way of finding bad sectors
on a diskette that the user suspects have gone bad. While verifying is
being done, VDS may be cancelled by pressing up-arrow.

ZDs Zero Disk Sectors. SUPERZAP will ask for the drive number and the
number of the relative sector on the diskette of the first sector to be
zeroed. Next, it asks for the number of sectors to be zeroed. The zero-
ing is then done. The read protection status of each sector is not
changed.

CDs Copy Disk Sectors. SUPERZAP will ask for the drive number and the
number of the relative sector on the diskette of the source (where the
data is coming from) range's lst sector. Next, it will ask for the same
data for the destination (where the data is going to) range's lst sector.
Lastly, it will ask the number of sectors to be copied. The copy is then
done. Destination sectors are each assigned the read protection status of
the corresponding source sector. ' '

CDD Copy Disk Data. This function differs from CDS in that any string
of diskette bytes may be copied. SUPERZAP will ask for the drive number
and the number of the relative sector on the diskette of the sector con-
taining the source range's lst byte and then ask for that byte's offset
within the sector. It will ask for the same information for' the destina-
tion range's lst byte. Lastly, it will ask for the number of bytes (65535
is the maximum allowed) to be copied. The copy is then done. The read
pProtection status of the destination sectors is not changed.

DPWE Display PassWord Encode. SUPERZAP will ask for the password, en-
code it and display the resulting encode in hexadecimal as it would appear
in a directory FPDE.

DNTH Display Name/Type hashcode. SUPERZAP will ask first for the file-
name and next for the type (name extension). It will then hash them and

" display the resulting hashcode in hexadecimal as it would appear in the
directory HIT sector.

EXIT End SUPERZAP and exit to 44@DH (DOS READY).

Since 2ZDS, CDS and CDD change diskette data, the user is first asked if he/she
is sure this function is wanted, just in case the wrong function was keyed.

For CDS and CDD, the copy normally proceeds in ascending byte order for both
the source and destination. However, if the highest source byte is within the
destination range, the copy is in descending byte order to avoid destructive
overlap. :

All disk I/O's are done through the normal DOS sector I/0 routines. Thus, if
an error occurs, system option AM and AW I/0 try counts are in effect.

For VDS, ZDS, CDS and CDD, if a disk I/ error results, the operator will be

ADDITIONAL PROGRAMS &2

offered the choice of retrying, skipping the scector or terminating the fu
tion. In many cases, repeated retrying will eventually work. If the err

o

nc-
c

fector was a source sector, skip will cause the associated destination bytes to
receive whatever happens to be in the source's buffer; this should be no
problem as the user is faced with a reclaim job anyway.

When SUPERZAP is waiting for a numeric value, keying an X as the value will
cause SUPERZAP to terminate the function and return to the menu. If SUPERZAP
1s waiting for a filespec, a null parameter will terminate the function.

When any of DD, DM, DFS, DTS or DMDB is suffixed with ',P', the sectors or
memory pages will be printed as well as displayed. For DD,P, DFS,P or DTS,P,
the user will be asked for the number of sectors to be printed. For DM,P or
DMDB,P the user will be asked for the number of bytes. If the printer is not
ready or drops ready, SUPERZAP will loop waiting on it without operator notifi-
fication. Pressing the P key will cause printing to pause; press ENTER to con-
tinue. Pressing the H key will terminate printing.

6.1.2. Display Mode. For DD, DM, DFS, DTS and DMDB, while a sector or
memory page is displayed, SUPERZAP is in the display mode and waits for a dis-
play mode command. Except for the F and L commands, the keyed command bytes
are not displayed and do not require termination with ENTER; the command is
executed as soon as all characters of a display mode command have been keyed.
The display mode commands are:

X The current function is terminated‘and SUPERZAP returns to the menu.
«Rb Redisplay the same sector or memory page.

+ or 3 . Dis?lay the next higher sector or memory page.

'; "Display‘thefﬁext‘iower #ector or memory page.

i Re#tért the same function.

} 4 Restart the same function, retaining the lst parameter unchanged.

SCOPY DD and DTS only. The current sector is to be copied to a speci—
fied sector. SUPERZAP will ask for the destination sector's drive number
and relative sector number. The destination sector may be the same as the
source sector. SUPERZAP will read the destination sector and report its
status. Then the source sector's contents are written to the destination

- sector. SCOPY is useful when a sector is found to have bad parity but,
with the exception of a few bytes, is intact; by SCOPYing upon itself, new
parity will be generated, and the.sector can then be repaired. It is also
useful for altering a sector's read protect status,

When SUPERZAP is in the display mode, it has a diskette, file, main memory
or memory dump file search capability. The match is on 1 to 4 hexadecimal
bytes (without the suffixed H) which are represented by aa,bb,cc,dd. When
. the search finds a match, the sector or memory block containing the first
' byte of the match is displayed with a thin vertical blinking cursor to
mark its position. That cursor will disappear as soon as a key is depres-—

6-3 ADDITIONAL PROGRAMS

sed; however, the associated 'find' position is remembered in case the
search is to be continued. When SUPERZAP 1s in display mode, the fol-
lowing commands to perform searching may be keyed in, terminated by ENTER.

F,aa,bb,cc,dd The 1 to 4 hexadecimal match bytes are stored, and
the search starts at the first byte of the diskette (if DD or DTS
mode) or file (if DFS or DMDB mode) or main memory (if DM mode).

F, The same as above except the previously established match
bytes are used.

Fxx,aa,bb,cc,dd The 1 to 4 hexadecimal match bytes are stored,
and the search starts within the current sector or block at the xxth
relative byte where xx is a 2 digit hexadecimal number without the
suffixed H. ,

Fxx or Fxx, ; The same as above except the pPreviously estab-
lished match bytes are used.

F The search continues at the first byte following the position
of- the first byte of the last match, and the search uses the previ-
ously established match bytes.

L,aa,bb,cc,dd This command is to be used instead of F,aa,bb,cc,dd
when, in DFS mode, the file being searched is standard load module
(i.e., SUPERZAP/CMD, LMOFFSET/CMD, etc.) and the user wants SUPERZAP

the imbedded loader control information interfering with the match.
The resulting display will still contain the loader control informa-—
tion; the user must be Prepared to occasionally see this control in-
formation imbedded within the matching bytes. Usually, but not al-
ways, this control information is 4 bytes long with the first byte
being a hexadecimal @1. Except for purging this control information
from the match, L,aa,bb,cc,dd works the same as F,aa,bb,cc,dd. The
F command may be used to continue an L type search.

L, The same as above except the previously established match
bytes are used.

MODxx DD, DM, DFS and DTS only. SUPERZAP enters modify mode and posi-
tions the cursor to the first hex digit of relative byte xx (value gPE -
FFH) of the current page or sector. ‘

End SUPERZAP and exit to 492DH (DOS READY).

If an error occurs during the keying in of a display mode command, the partial
command is ignored and the sector or block is redisplayed again.

" Modify Mode. SUPERZAP enters modify mode upon execution of the dis-
Play mode command MODxx. This mode allows the changing of individual bytes
within the current disk sector OT memory page. Responses while in modify mode
are defined as follows:

ADDITIONAL PROGRAMS 6-4

Hexadecimal digit character -9 or &4 - F, The hex digit at the cur-
rent cursor positicn is replaced by the new hox digit, and the cursor is
advanced one position. Tf the cursor wraps around, an error will occur if
the next character inputted is a hex digit character. Replacements in a
main memory page are for real while replacements in a sector are buffered
until the sector is written or a 'Q' command cancels the pending update.

Space or right arrow. The cursor is advanced one position.
Left arrow. The cursor is retarded one position.
Shift right arrow. The cursor is advanced 4 positions.
Shift left arrow. The cursor is retarded 4 positions.

Down arrow. The cursor is advanced one display line.
Up arrow. The cursor is retarded one display linme.
ZTxx This sequence is displayed vertically in display column 7 and

must terminate with ENTER. All hex digits from and including the cursor
position to and including the 2nd hex digit of relative byte xx are
zeroed. The cursor is left positioned to the lst hex digit following
relative byte xx, and if wrap around occurs, the next input char may not
be a hex digit.

BTxx,jk This cowmand is similar to ZTxx except that each byte's l1st digit
is replaced with the hex digit j, and each byte's 2nd digit is replaced
with the hex digit k.

Q For sector operations only. Modify mode is terminated, any
_ changes in the buffer are discarded, and SUPERZAP returns to display mode.

ENTER For memory page operations, modify mode is terminated, and
SUPERZAP returns to display mode. For sector operations, the operator is
asked if he/she really wants to update the sector now. If not, SUPERZAP
continues in modify mode. If 80, the sector (with any changes) is written
back to disk, modify mode is terminated, and SUPERZAP returns to display

mode.,

When modify mode encounters an error, it will display 'INVALID MODIFICATION
MODE CHAR. REPLY '*' TO CONTINUE'. Upon receiving * , SUPERZAP returns to

modify mode.

6.2. DISASSEM.

Program DISASSEM/CMD disassembles 2-8p object code from a standard TRS-8@ 1load
module or from main memory. The disassembled code is sent to the display or to
the printer. Generated source text may be sent to disk and a location cross
-reference may be produced.

6-5 ADDITIONAL PROGRAMS

Responses to the query 'OBJECT FROM MAIN MEMORY OR DISK?! (M OR D)

1. null or D Object is a disk load module.

1. Respond to the query 'FILESPEC?' with the filespec of the load
module to be disassembled.

2. Respond to the query 'OFFSET OBJECT VIRTUAL ADDRESSES BY? (HEX)'
with either null (meaning #) or a 1 to 4 digit hexadecimal number
(vithout suffixed H) which when added to the load addresses within

main memory, but actually executes from another, Wraparound is al-
lowed. Example;

If the object module loads into CPPPH — FFFFH but is to execute
in 7PPPH - AFFFH, applying an offset of B@pP will cause the
disassembler to disassemble as if the load was actually done to
780PH - AFFFH.

3. Respond to the query 'VIRTUAL RESTART LOCATION? (HEX)' with
either null (meaning start at the file beginning) or a 1 to 4 digit
hexadecimal number (without the suffixed H) which is the listed loc-

2. M The object code is in main memory.

1. Respond to the query 'OBJECT VIRTUAL BASE ADDRESS? (HEX)' with
the 1 to 4 digit hexadecimal location value (without suffixed H)
where the object code is, considered to execute from, whether or not
it is actually there now. In the listing, this value will be the
first instruction's printed location value.

2. Respond to the query 'OBJECT REAL BASE ADDRESS (HEX)?' with null
(meaning the real and virtual locations are the same) or with the] -
4 digit hexadecimal main memory location (without suffixed H) where
the disassembler will actually find the object code.

Responses to the query 'ANY OPTIONS?';

1. null No more options to be specified.
2. PIR The output is sent to the printer instead of the display.
3. BFSP Bypass Full Screen Pauses. In normal operation the disas—

sembler pauses whenever the display screen is full or whenever a break
occurs in the sequential locations of the disassembled file. The disas-
sembler waits for (1) ENTER to continue, (2) X to terminate the disassem—
bly or (3) V (object from main memory only) to restart the disassembly at
a8 new location. The BFSP option bypasses this pausing, causing display to
occur as fast as the disassembly can proceed. This o~tion is automati-
cally invoked if option PTR is specif :d.

ADDITIONAL PROGRAMS 6-6

The remainder of the cptions are legal only when thec object code 1s from disk:

4. NCR The location reference table is not to be built and nc
display or listing done of it.

5. NIP Do not print or display the disassembled instructions.

6. SID Source To Disk The disassembled code is to be sent to
disk in the format of an EDTASM source text file. See discussion below.

7. FGH=xxx First Generated Name xxx 1is the 3 alphabetic character
name of the first name to be assigned during the STP action described
below. The default name is AAA.

8. RID ' The location reference table is to be stored onto disk.
After the reference table is built, the program will ask for the
'REFERENCE TABLE FILESPEC?'. Respond with the filespec of the file to
contain the reference table. Reference table files can be used (by a

_user—created program) to merge the reference tables of two or more
_ programs. See below for file format.

9. REA Enable listing of all types of references; this is the
default.
1f. RE& Enable list of the specified reference type where '&' is

one of L, P, R, §, T, U, V, W or X. Reference types are defined at the
beginning of each location table listing.

11. RIA Disable list of all types of references.

12, RI& Diséble listing of the specified reference type where '&'
is one of L, P, R, S, T, U, V, W or X.

The disassembler operates through four phases:

1. 1If object code from disk and option NCR not specified, DISASSEM dis-
plays 'BUILDING CROSS REFERENCE TABLE' and passes through the object code

~ building the location reference table. For a large disassembly this will

take some time. If insufficient main memory for the table, the disassemb-
ly will terminate.

2. If RID option specified, this phase writes the location reference
table to disk.

3. List disassembled instructions to display or printer. If STD speci-
fied, the resulting text is also written to disk. On the disassembled
instruction print lines, column 1 indicates the number of references to
bytes of the instruction; the value is hexadecimal with blank meaning

"and F meaning 15 or more references. Column 2 indicates which bytes of

the instruction have been referenced. If blank and column 1 non-blank,
then only the instruction's lst byte is referenced; otherwise the hex
digit represents a 4 bit binary mask of which bytes, from the left, are
referenced.

6-7 ADDITIONAL PROGRAMS

4. If object is from disk and NCR is not specified, the location refer-
ence table is displayed or printed. The definitions of the reference type
codes are given first. Then, in ascending numeric order, every referenced
location is listed with the location of every referencing instruction.
Suffixed to each referencing location value is the reference type code for
the Z-8p instruction making the reference.

If the disassembler finds something wrong with the object module, either 'DISK
OBJECT FILE FORMAT NOT AS EXPECTED' or 'PAST END OF FILE' will be displayed and
the disassembly will terminate. '

While the disassembled instructions are being displayed or printed, holding
down P will cause a pause; press ENTER to continue. Holding down X will term-
inate the disassembly. At most other times when DISASSEM is awaiting a user
response, the disassembly may be terminated by holding down up-arrow and pres—
sing ENTER.

For main memory disassemblies, the operator may shift the disassembly point at
will.: When the disassembly is paused, keying V will display the query 'VIRTUAL
RESTART LOCATION? (HEX)'. The operator responds a 1 to 4 hexadecimal digit
value which is the main memory location where the disassembly is to restart.

If the PTR option is specified and after all options have been specified, the
following occurs:

Respond to the query '# LINES PER PAGE, EXCLUDING TOP AND BOTTOM MARGINS?
(1-255)' with the number of printable lines per page.

Respond to the query '# LINES EACH FOR TOP AND BOTTOM MARGIN? (g-1p)
with the number of lines the disassembler is to skip at both the top and
bottom of each page. If #, the disassembler does no paging action. What.
the disassembler does for top and bottom margins is completely independent
and in addition to anything a printer driver may be doing.

Respond ENTER to the query 'REPLY "ENTER" WHEN PRINTER AT TOP OF PAGE'
when the printer is on and at top of page.

Respond to the query 'HIGH ASCII CODE FOR PRINTER? (54 - 7F)' with the 2
hexadecimal digit value (between 5AH and 7FH) for the highest printer code
for your printer.

The STD option causes the disassembled code to be converted into EDTASM type
source text code. The resulting STD output (if not too large) can be loaded
and assembled by EDTASM. The outputing of source text via the STD option works
as follows:

After the cross reference table build phase and the RID phase, respond to
the query 'ASSEMBLER SOURCE TEXT OUTPUT FILESPEC?' with the filespec of
the file to contain this generated source code. The file will be opened,
and the generated text sent to it during the main disassembly phase.

All numeric values within the disassembled code are replaced with a 3
character alphabetic name unique to that value. The names are assigned
arbitrarily in ascending alphabetc order with the first name assigned
either AAA or the name specified by the FGN option.

ADDITIONAL PROGRAMS &-8

1t & nuneric value does correspond to g disasscmbled location, the name
assigned to that value is placed in the location name field of that
location's instruction whep it is scnt to disk and displayed or printed.

Tf a numeric value does not correspond to a disassembled location, an EQU
statement is generated at the end of the source texl to equate the name -
with the value.

ORG statements are generated as necessary, and the END statement 1is
generated as the last text statement.

The format of the reference table file created by the RTD option is:

1. 1 byte = CPH. Backward EOF. Tgnore it.
2. 1 or more entries of the form:

l. 2 byte mémory location value, lst byte = low value, 2nd = lLigh.
2. Control byte, bits 7 - § (7 is left most):

- 7-6 = 11. Dummy lasf‘entry in table. Tgnore all other bits and
. bytes of the entry.

7-6 = $l. Referencee entry. Bits 5-f = #. The location is
referenced by one or more of the subsequent referencer entries.

referenced the location of the previous reference entry. Rits
5-f contain the referencer instruction type: fp=8,1=1T, 2 =
U, 3=V, 4=W4,5=X,8=7P, 9= L, and 1§ = R. See a

- reference listing for definitions.

. ‘ 7-6 = §P. Referencor entry. The instruction at this location

6.3. LMDFFSET.

Program LMOFFSET/CMD reads a tape or disk load module, displays its load infor-
mation, optionally changes the program's load area, optionally attaches an ap-
pendage enabling the program at execution time to move itself from its load
area to its execution area, optionally prepares the module to run under non-—
disk BASIC via SYSTEM, and stores the module onto disk or tape with a new name.

IMOFFSET functions as follows: -

1. Reads either a tape~type assembly load module from tape or a disk-type
assembly load module from disk.

If from disk, LMOFFSET asks for the source filespec.

When reading from tape, a single * will be displayed when LMOFFSET 1is

. ready for the tape. Do rewind (if necessary) fast forward position—
ing (if necessary) and press PLAY. **% appears when tape read

synchronization has completed. The character C will be displayed

6-9 ADNTTTANAT DDArD Ave

when a bad checksum is encountered. The character P will be djs-
played if leading extraneous data bytes encountered. The charcaterr
I will be displayed if imbedded extraneous bytes are encountered.

2. Displays (1) the area into which the module will load, (2) possible
conflicts with system storage and (3) the module entry point. If an
appendage is scheduled to be applied, the entry point will be into the
appendage.,

3. Asks for a new load point. Reply either with a new load point or
simply reply ENTER if satisfied with the current load point. If the user
is simply transferring the load module without change, respond ENTER to
the first request for a new lcad point and LMOFFSET will go directly to

step 7 below,

4. If a new load point specified, LMOFFSET asks if the appendage is to be
suppressed. '

- equal to #. The resulting output load module can be used via LOAD
where two or more load modules are loaded into main memory and then
stored as one load module via DOS library command DUMP.

If the appendage is not to be suppressed, then LMOFFSET will append
to the user program either a DOS enabled appendage or a DOS disabled
appendage, depending on whether DOS is to be disabled or not.

5. If a new load point was specified, LMOFFSET goes back to 3 above to
display the resulting load information and ask for a new load point. If
another load point is given, it cancels the one specified earlier,
including its scheduled appendage, if any.

6. Finally, when the response to 3 above is a null, then if 2 new load
point was specified and the appendage is not suppressed, LMOFFSET asks if
DOS is to be disabled. Tf 80, the DOS disabled appendage is selected; if
not, the DOS enabled appendage is selected.

7. 1MOFFSET next asks if the destination is disk or tape.

If the destination is disk, LMOFFSET asks for the filespec of the
load module file to be created.

If the destination is to tape, IMOFFSET asks for the tape module name
and then which tape speed (L or E). Next it asks for ENTER when the
tape is positioned and in record mode.

8. The resulting load module is then written to disk or tape. TIf a new
load point was specified, (1) the load address for each object code record
is altered, (2) if the appendage was not suppressed, an extra object code
record (the appendage) is inserted before the entry point record and the
entry point is set to the appendage's Ist byte, and (3) the entry point is
set to PPPP if a new load address was specified and the appendage was
Suppressed.

ADDITICNAL PROGRAMS &-10

9. When the destination file write is completced or if an error or other
type of terminaticn occurs during step 7 or & above, LMOYFSET asks if the
same wodule 1s to be written to another file (which may be the same file).
If so, steps 7 and 8 above are repeated.

1. When all done or if an error or other type of termination occurs while
not in steps 7 or 8, ILMOFFSET asks if another source load module is to be
processed. If so, execution returns to step ! above; if not, LMOFFSET
exits back to DOS.

The up—-arrow key may be used at any time to terminate the current LMOFFSET
function. If LMOFFSET is waiting for a response, hold down the up-arrow key
and press ENTER.

A module can end up with multiple appendages if the output from one LMOFFSET
run is made the input to another, but doing this is strongly discouraged; in
the case where one appendage is a DOS disable appendage, it must never be done.
IMOFFSET knows nothing of a previously existing appendage appended by aftevious
execution of IMOFFSET.

IMOFFSET does not perform any object code relocation!ll!! It only aééigns code
to new load locations so that DOS can load the module from disk without damage

to DOS.

If‘-’the source program loads into the display area (3CPPH - 3FFFH) without
overflowing it, those object code records will not have their load addresses
modified.

The appendage added to a module by LMOFFSET starts with 64 bytes of zeroes.
This grea is available to users to patch in special code. The load address of
this patch area is the same as the module's resulting entry address, providing
there is only one appendage. Z-8J code patched into this area will be the
first executed when that program commences execution. This will be done before
the program is moved to its execution locations and before DOS is disabled, if
DOS is to be disabled.
When a program is to rum in any part of the DOS area, a DOS disabling appendage
must be specified. The DOS disabling appendage causes the user program to exe-
cute as if it was loaded from tape under the non-disk BASIC SYSTEM function.
Vhen the reéultiﬁg user program module is executed, the action is as follows:
For a DOS enébled appendage:
1. Executes any user supplied code in the 64 byte patch area.
2. Moves the main program to its execution locations.
3. Commences execution of the main program.
" For a DOS disablekappendage:

1. Executes any user supplied code in the 64 byte patch area.

2. Moves the display screen contents to high memory.

6-11 ADDITIOHAL PROGRAMS

3. Displays the following:
RECGRD AND THEN PERFORM THE FOLLOWING INSTRUCTIONS

1. HOLD DOWN BREAK KEY AND PRESS RESET TO ACTIVATE NON-DISK

BASIC.
" 2. RELEASE BREAK KEY AND ENTER BASIC INITIALIZATION RESPONSES.

3. ENTER "SYSTEM".
4. ENTER " u

3. When the operator has done the above, the appendage continues
" execution. :

My

A.NCRestores the screen contents from high memory.

N PN

5. Moves the main Program to its execution locations.

6. Commences execution of the main program.

6.4, DIRCHECK.

The DIRCHECK/CMD module tests and lists the target diskette's directory. If
errors are found in checking the directory, they are listed before the direc—
tory listing. DIRCHECK also allows the option of cleaning up (not repairing)
the directory, and, as an aid to moving single density diskettes back and forth
between<the Models I and IIT under NEWDOS/8§, ‘allows the option of writing the
directory - protected. ... R B T

to goitdﬁtﬁéfdiépféi. e

SRt RN S5 LA S e P TS S L e,
nd nd Lipy aave o0 AL e e e e T e
To}thé’qdeiyﬁ'OUTPUTxTOiPRINTER!}“réply’X*&f‘butput’to g0 to printer and N if E

2 “teel L -

To the query_'WHICH DRIVE CONTAIHS TARGET DISKETTE', reply the target drive
numberyiin. decimaly «ul A L:o. oo R L T e

-4 T S ¢

TR GD ‘..7‘--"1 - BRSNS, RN PO R S R e . . . v . o
DIRCHECK “réads“the BOOT sector (the diskette's lst sector), and tests ‘that the
first 2 bytes are PfH ang FEH respectively. If they are, DIRCHECK uses the 3rd
by:eiaé-the'numBer‘dfkthe'lump at whose first sector the directory starts. If
the first 2 bytes are not correct, DIRCHECK displays '#%*#%%* DISKETTE 1ST SECTOR
NOT "“BOOT". ASSUMING DIRECTORY STARTS ON LUMP 17 DECIMAL.'. .

DIRCHECK proceeds to-read-the'directoryé " In previous NEWDOS versions, DIRCHECK
refused to process a irectory that was not write protected. Because of the
problem of moving single~density diskettes between the Model I and Model III
under NEWDOS/8@, an unprotected directory will now be accepted, with two error
messages displayed, one at this time and one after the files have been listed.
The error message is '#%*%¥% AT LEAST ONE DIRECTORY SECTOR UNPROTECTED'. If
this message appears along with many other errors, the user can assume that
DIRCHECK has not found the directory and should NOT eXecute the W function de—

‘cribed later.
DIRCHECK uses the drive's PDRIVE (see section 2.37) data to determine the

ADDITIGNAL PROGRAMS /R

number of lumps and grauules accounted for by the directory. Tf the PDRIVEL
data is not correct for the diskette, it is very probable DIRCHECK will list
errors that are not actually present.

+ Ty

S

Complaints, if any, about the directory are next listed. If a number is given,
it is in hexadecimal for use in directory repair via SUPERZAP. Do not try to
repair a bad directory unless you know what you are doing!!!!!!! The next best
thing is to try to extract valued files via COPY and then re~format the disk-—
ette having the bad directory.

If the complaint is about a directory entry for a file, either the primary or
an extended entry, the hexadecimal code is the DEC for the file's FPDE. When
the complaint deals with a file extended directory entry but does not specify
the file name/type, the hexadecimal code is the DEC for the FXDE itself. When
the complaint deals with a HIT sector byte, the hexadecimal code is the rela-
tive location of that byte in the HIT sector. When the complaint deals with a
GAT sector byte, the hexadecimal code is the relative location of that byte in
the GAT sector. When the complaint deals with a granule, the hexadecimal value
is expressed in bb,r format where bb is both the lump number and the relative
byte location of the lump's byte within the GAT sector and x is both the rela-
tive granule within the lump and the bit number, counting from zero from the
right, within that GAT byte.

The diskette's name and date are next listed.

. The files are next listed, with numeric values in decimal and the following
definitions: :

S ‘ System file.
I File has invisible attribute.
P=nnn .File has access level nnn, and both update and access

passwords are non-blank.

EOF=s5s5s5/bbb End Of File value. sss = the relative sector within the
file. bbb = the relative byte within the sector.

nnn EXTS nnn is the number of extent elements, maximum of four per
FDE, used to account for this file's disk space.

nnn SECTORS The number of sectors allocated to this file.
Lastly, the number of free granules and locked out granules for the diskette
are displayed. If the diskette contains more than 60H (96 decimal) lumps or if
GAT relative byte 6fH equals §FFH, DIRCHECK assumes that there is no lock-out
(existence) table. Note, NEWDOS/8¢ does not mark granules as locked out; the
lockout table is maintained only for compatibility with Model I TRSDOS.

If at least one direc¢tory sector is unprotected, another error message indi-
cating such is displayed.

'FUNCTION COMPLETED' message is displayed followed by the query:

6-13 ADDITIONAL PROGRAMS

REPLY
TO EXIT PROGRAM
IF ANOTHER DISKETTE FOR SAME SPECS
- FOR PROGRAM RE~INITIALIZATION
TO WRITE DIRECTORY SECTORS PROTECTED
TO CLEAN UP (NOT REPAIR) THE DIRECTORY

[IR

Reply with one of the following:

N Program exits to DOS at 4@2DH.

Y Another diskette to be checked but with same response to the printer
query. ‘

I = Another diskette to be checked but with different response to the

printer query.

W . The directory sectors are read and re-written in protected state.

- Refer to specifications for DOS command WRDIRP (section 2.49) and option

SYSTEM option BN (section 2.46). This function is only meaningful for
single density diskettes that are going from Model I to Model III or vice
versa or used interchangeably.

C All unused FDEs within the directory are zeroed. This is a cosmetic
function only that clears out residual information from no longer used
FDEs. Normally, when DOS releases FDEs via KILL or automatic space deal-
location, it only zeroes bit 4 of the first byte of the FDE, leaving the
rest of the information for the remote possibility that the sophisticated
user will attempt to reclaim the file or the sectors it used to own.

During display or printing, pressing:

BREAK - processing will pause at end of current line or line group.
ENTER -~ continues processing.

UP-ARROW -~ terminates displaying or printing.

EDTASM Disk Oriented Editor/Assembler.

35 months ago Apparat converted the TRS-8¢'s tape oriented editor/assembler to:

1. Read text from disk as well as cassette.

2. Write text and/or object to disk as well as cassette. Disk files are
validity read after all sectors written.

3. Allow down-arrow scrolling to display up to 15 text lines.

4. Prevent the confusing printer output associated with DEFM. Only the
st byte of associated object code is listed.

5. List symbols in alphabetical order with 1 “erence list.

ADDITIONAL PROGRAMS &-i4

€. Accept and convert lower case alpha to upper.

It was anticipated that Radio Shack would soon come out with a disk oriented

editor/assembler that would eliminate any need for the Apparat enhancements.
. To a degree that has come to pass, but not sufficiently to bury the Apparat

enhanced version. Since the Apparat enhanced version is based on the copy—
righted tape editor/assembler, Apparat has always required and still requires,
as a pre-condition of use of its enhanced version, that the user purchase a
copy of the TRS-8p tape editor/assembler and thereby pay the royalty due. In
an effort to enforce this, Apparat has always refused, and will continue to
refuse, to supply any documentation for the editor/assembler beyond that deal-
ing explicitly with Apparat's enhancements.

This EDTASM is essentially the same as that offered with NEWDOS/2l and
NEWDOS/8@ Version 'l except:

1. EDTASM will now display, as part of the 'A' CMD, after the TOTAL
ERRORS display, the number of bytes left in the text area so the user can
judge his approach to symbol table overflow or text buffer overflow.

2. (Model III only) Object code cannot be outputted to tape. The user
must output the object code to disk and then use LMOFFSET to copy it to

< tape.
Supplemental instructions for the editor-assembler.

1. To load a text module into the text buffer, enter one of the following
commands .

. 1. L D=filespecl if text from disk
2. L T=nannnn if text from cassette

where filespecl is the filespec for the assembler text module to be
loaded into the text buffer from disk and nnnnnn is the name of the
assembler text module to be loaded into the text buffer from tape.
Fxamples:

1. L D=OLDTEXT/SRC:1l loads the assembler text file
OLDTEXT/SRC into the text buffer from the diskette currently
mounted on drive 1.

2. L T=0LDTXT loads the assembler text file OLDTXT into
the text buffer from tape.

If the text buffer already contains text, the query 'TEXT IN BUFFER.
ARE YOU CONCATENATING???' appears. If you are not concatenating, re—
Ply N; the buffer is marked empty before loading the specified text
module. If you are concatenating, reply Y to cause the new text to
be appended onto the end of the old. No concern is shown for over-—
lapping sequence numbers; therefore you should execute a N EDTASM
command upon completion of the load to assure a valid set of ascend-
ing sequence numbers.

. 2. To store a text module:

6-15 ADDITIONAL PROGRAMS

1. W D=filespec? if text going to disk
2. W T=nnnnnn if text going to cassette

where filespec 2 is the filespec of the disk file to receive the
-assembler text frow the buffer and nnnnnn is the one to six character
name given to the text file written to tape. Fxamples:

1. W D=NEWTEXT/SRC:l The assembler text (not the object
code) currently in the text buffer is written to file
NEWTEXT/SRC on the current diskette mounted on drive 1.

2. W T=NEWTXT The assembler text currently in the text
buffer is written to tape and named NEWTXT.
3. For A commands with NO option not specified, respond to the query
'OBJECT FILE TO DISK OR TAPE? REPLY D OR T?7':

1. T (Model I only) Object code going to cassette. The program
name will come from the A command.

2. D Object code going to disk. Respond to the query 'OBJECT
FILESPEC?' with the nnonnnnn/ttt.pppppppp:d filespec of the object
module. The file will be opened immediately, but not written until
end of assembly listing. The name in the A command is ignored.

4., When an output text or object disk file is opened, one of the
following is displayed:

1. 'FILE ALREADY EXISTS. USE IT??7?'. Reply Y if this is your
intention. Otherwise reply BREAK to terminate the W or A command.

2. EERESEEINkARRRRE FILE NON-EXISTENT. REPLY 'C' TO CREATE IT'.
Reply C if this is your intention. Otherwise reply BREAK to
terminate the W or A command. :

5. Due to an error in the original DOS, EDTASM runs with interrupts
disabled (except when re-enabled by disk I/0) in order that use of BREAK
will function properly.

6. This EDTASM can execute in a regular TRSDOS Model I environment.

7. This EDTASM uses the standard keyboard, display and printer routines
and control blocks. Users altering the system beware!!!l

6.6, CHATNBLD.

The BASIC program CHAINBLD/BAS is a simple program to allow users to create and
modify chain files (chaining is discussed in section 4.3).

CHAINBLD operates in record mode, requiring that an EOL character (ENTER char-

acter) appear in the file at least every 240 bytes, and it treats each occur-
ence of the LOL character as both the end »f a BASIC input line and the end of

ADDITIONAL PROGRAMS 6-/6

a record within z chain file. All 1nserts, deletions, replacements, moves and
coples are dene ir terms of records.

Furthermore, CHAINBLD makes no provision (except for the old Version ! hex
codes 8§ - 83) for the file to contain special non-printable characters. The
rule is that if the string resulting from the BASIC statement LINEINPUT CS$
does not contain a given character, then that character cannot become part of
the chair file. The exception is the EOL character which is automatically
supplied by CHAINBLD. If the user needs special characters in his/her chain
file, some other program must be used to build the chain file. As a last
resort, there is always SUPERZAP.

The CHAINBLD program starts off with a 16 second initialization period while it
allocates maximum space to the string area. Users are warned that if BREAK is
used to interrupt or terminate the CHAINBLD program, they must remember that
all available space has been assigned to the string area and -that due to this
lack of space, some functions will not work. If a CLEAR is done to free up
some space, be sure to specify a string area size.

After initialization, the main menu is displayed (not to be confused with the
edit menu). The choices are:

1. DELETE ALL TEXT LINES All the text lines in the string area are
deleted and the edit menu is displayed. When CHAINBLD starts execution,
there are no text lines in the string area.

2. LOAD EXISTING TEXT FROM DISK Use this option to edit an existing
chain file. If the string area already contains text lines, CHAINBLD will
ask if those lines are to be deleted. If not, CHAINBLD returns to the
main menu as it assumes the user wants to do more with the previous text.
Otherwise the old text lines are deleted.

CHAINBLD will then ask for the existing chain file's filespec. If the
filespec does not contain a name extension, the name extension JCL is
assumed. The file is then loaded into the string area. The file cannot
exceed the string area capacity and cannot have more than 1999 lines. The
file must be segmented into records as discussed above. After the load,
CHAINBLD displays the edit menu.

3. SAVE TEXT TO DISK The user has completed the creation and/or edit-
ing of the chain file text and now wants to write it to disk. If there
are no text lines, the CHAINBLD will ask if a null file is to be written;
if not, CHAINBLD goes back to the main menu.

Next, CHBAINBLD asks if the file is to be written so that it can be pro-
cessed by NEWDOS/8¢ Version 1. If so, any /./§ through /./3 chain control
records are changed as they are outputted by substituting the corres—
ponding single byte control code (8¢H - 83H) in place of the /./x
character sequence. The text in the string area is not changed.

CHAINBLD then asks for the output file filespec. TIf the filespec does not
contain a name extension, the name extension JCL is used. The file is
then written to disk. When done, CHAINBLD goes back to the main menu.

4, EDIT TEXT This option does nothing except display the edit menu.

6-17 ADDITIONAL PROGRAMS

When

5. EXIT PROGRAM If the string area contains text that has not yet been
written to disk, CHAINBLD asks if the user really wants to exit the pro-
gram; if not, CHAINBLD goes back to the main menu. Otherwise CHAINBLy de-
letes all text lines and releases all string space except 5§ bytes. The
program then ends in the normal manner.

the edit menu is displayed the user has a number of choices:

1. List text lines. The text lines are implicitly numbered in sequential
order regardless of the changes that take place in the text. Line numbers
do not belong to individual text lines. Instead a line number indicates
the line's position at the current time within the file. This means that
insert, delete, copy and move all change the line numbers of some or all
of the text lines. The L and ; edit commands allow the user to dis—
play the text limes. L; displays the first line. L/ displays the last.
152 displays’ the 52nd line. In each case, if any text lines follow the
target line in the text, they are also displayed. The ; edit command
allows forward text paging.

2. The I edit command allows for a one or more text lines to be inser-
ted in the text after the specified line. I@# does inserting at the start
of the text. I/ does inserting at the end of the text. 1I23 does in-
serting after line 23. Lines are inserted into the text until, but not
including, a line containing the /.// character sequence is encountered.
That character sequence terminates the line insert mode.

3. The R edit command allows a new line to replace an old line. R43
causes text line 43 to be replaced with the new line that CHAINBLD will
ask for. :

4, The D edit command allows one or more text lines to be deleted. D34
deletes text line 34. D 2¢ 41 deletes text lines 2¢ through 41.

5. The X edit command allows the specified text line to be added onto.
Note that CHAINBLD does not actually allow a line to be edited. The edit
mode really refers to edltlng the entire text.

6. The C edit command allows the specified lines to be duplicated to
another part of the text. C 20 3§ 5 causes a copy of text lines 2§
through 3§ to be inserted after text line 5. Please note that the old
lines 2§ through 4§ will now have line numbers 31 through 42.

7. The M edit command allows the specified lines to be moved to another
position in the text. M 2f 39 5 causes the text lines 2§ through 3¢ to
be deleted from the text and reinserted after text line 5.

8. The U edit command redisplays the edit menu.

9. The Q edit command redisplays the main menu.

The best way to learn CHAINBLD is to use it. The NEWDOS/8p distribution
diskette comes with a sample chain file named CHAINTST/JCL. Load it in and

look

at it. Once in the string area, you may modify the text as desired, but

do not store it back out as CHAINTST/JCL; use some other name.

ADDITIONAL PROGRAMS 6-18

6.7. ASPOOL.

1. The object module ASPOOL contained on the NEWDOS/8f diskette is H. S.
Gentry's automatic Spooler Program, modified by Apparat to operate with
NEWDOS/8p and to self-relocate. This program will automatically direct your
printer output to the disk, and then automatically print it on the printer.
This spooler program will print in the background while your foreground main
program is executing provided the main program every second or so either sends
a byte to be spooled or checks the keyboard for a new input character.

This spooler program is included on the NEWDOS/8p diskette as a free program to
NEWDOS/8¢ owners. It is NOT a fully supported part of NEWDOS/8¢.

The basic operation of NEWDOS/8§ DOS assumes that output that DOS sends to the
printer will not involve disk I/O enroute to the printer. Therefore, the
spooler discards all printer output it senses coming from DOS (such as PRINT,
JKL, DIR with P option) with the warning message CAN'T SPOOL FROM DOS being
displayed once for each spooled file.

‘Thia spooler program does NOT allow a spool file to be printed multiple times;

once printed, the file EOF is set to @ and the file closed to reclaim the file
space. This spooler program does NOT remember spool contents from one spool
activation to the next (this includes a reset). The user is warned that while
the spooler is active, do NOT use reset or DOS library command BOOT to get to
DOS ready. Instead, if another way is not available, use DFG to get to MINI-
DOS and then DOS library command MDBORT to get to DOS READY or use '123' to get
to the DEBUG facility and then use DEBUG command Q to get to DOS READY.

2. INITIAL SETUP. . Create a working spool module. :

Before the spool system can be used, working program module copy(s) of ASPOOL
must be set up. You should set up a working program module for each different
configuration you intend to use. When making a working program module, the
input module 'filespecl' must ALWAYS be ASPOOL/MAS or a copy of it, and the
output module 'filespec2' must NEVER be ASPOOL/MAS. To create a working spool
program module (as opposed to the master), enter the DOS command filespecl,I
(example: ASPOOL/MAS:f,I). The program will then ask for parameter specifi-
cations: -

"The program asks if the software printer driver whose address in is &4@26H
- 4§27H at the time of spooler activation is to be used to drive the
:printer. Reply Y for yes or N for no (the spooler will drive the
printer). If N, then: :

The program asks if the printer is parallel or serial. Answer P for
parallel or § for serial. If serial, then:

The pfogram asks if the printer is an Hl4 type. Respond Y for
yes and N for no.

"The program asks if the printer output is to be formed into pages with a
form feed between pages. Reply Y for yes and N for no. If Y, then:

6-19 ADDITIONAL PROGRAMS

The user will be asked for the number of print lines per page. Enter
a number between 1§ and 99.

The program asks if the printer uses a soft or hard form feed. A soft
form feed is done by counting the number of lines printed and then print-
ing carriage returns (PDH) (with or without line feeds (PAH)) until the
end of the page is reached. A hard form feed is a single control char-
acter that causes a form feed function. If your printer will recognize a
hard form feed answer H, otherwise answer S. If soft form, then:

The program asks for the total number of lines per page. Answer with
a number between 1§ and 99.

The program asks if a form feed is to be done at the end of each print
file. Reply Y for yes and N for no.

The next question concerns automatic linefeed on each carriage return.
Some printers linefeed on carriage returns and the computer should not
output linefeeds. If your printer is of this type (Radio Shack standard)
answer the question with N. If you want the software to generate line-
feeds then answer with Y.

The program asks for the number of the disk drive that will be.used to
spool the print data. Answer with a number from ¢ to 3.

The program asks for the number of seconds to transpire after the last
keyboard key inmputted until the spool program can start printing again.
Respond with a 2 digit value #p -~ 59. The purpose of a non-zero delay is
to allow the keyboard to have primacy over the printer. When a keyboard
key is depressed and if the spool program is printing a file, printer
action will pause while keys are being inputted and until the required
number of seconds have passed since the last key.

The program asks if the printer is to be driven by the timer interrupts
(every 25ms on the Model I; every 33 or 25ms on the Model III) as well as
via keyboard input and spooler output. Reply Y for yes if the interrupts
are to be used; reply N for no. Allowing the interrupts to be used en-
ables the spooler program to print while a foreground program is executing
that does not frequently check the keyboard or send output to the spooler.
The disadvantage of using the interrupts is that for a buffered printer,
interrupts are disabled during the entire outputing of a line to the
printer. However, the time delay will probably be no worse than that
associated with disk I/0. If the interrupts are used, printing will
nevertheless stop if the foreground program never sends anything to the
spooler or tests the keyboard for input. This is because the disk I/0 to
read the next sector is done only during keyboard checking or main program
output to the spooler. See circular buffer discussion for an additional
disadvantage when the interrupts are used.

The program asks if the circular buffer is to be used to buffer keyboard
input characters. Reply Y if yes; N if no. The circular buffer helps
prevent lost keyboard input. If the 25ms interrupt is enabled to drive
the printer (see above option), the circular buffer uses the ROM keyboard
character input routine and therefore disables any drivers (such as

ADDITIONAL PROGRAMS 6-20

NEWDOS/8¢'s keyboard intercept routine, lower case driver, etc.) activated
before the spooler is activated. If the 25ms interrupt is not used to
send spooled output to the printer, then that does not frequently check
the keyboard or send output to the spooler. The disadvantage of using the
interrupts is that, for az buffered printer, interrupts are disabled during
the entire outputing of a line to the printer. However, the time delay
will probably be no worse than that associated with disk I/O0. 1If the
interrupts are used, printing will nevertheless stop if the foreground
program never sends anything to the spooler or tests the keyboard for
input. This is because the disk I/0 to read the next sector is done only
during keyboard checking or main program output to the spooler. See cir-
cular buffer discussion for an additional disadvantage when the interrupts

are used.

The program asks if the circular buffer is to be used to buffer keyboard
input characters. Reply Y if yes; N if no. The circular buffer helps
prevent lost keyboard input. If the 25ms interrupt is enabled to drive
the printer (see above option), the circular buffer uses the ROM keyboard
character input routine and therefore disables any drivers (such as
NEWDOS/8@'s keyboard intercept routine, lower case driver, etc.) activated
before the spooler is activated. If the 25ms interrupt is not used to
send spooled output to the printer, them the regular keyboard routine(s)

- (as existed in the 4§16H - 4P17H vector at spool activation) is used.
This latter also holds if the circular buffer is not used, regardless of
whether or not the 25ms interrupt is used.

Now that the spooler has all the initialization parameters, the in-main-memory
program is altered. The program then asks for the filespec of the working
program module to be stored on disk. Respond with the filespec you will use in
the filespec2,A DOS command discussed below; do NOT respond ASPOOL/MAS!!111!
The working program module will be written to disk, and the spool program exits
to DOS via 4§2DH.

3. ACTIVATE SPOOLING.

When spooling is to be used, enter the DOS command "filespec2,A" (example:
SPOOLER,A) where filespec2 is the filespec of ome of the working spool program
modules you have created. filespec2 must NEVER be ASPOOL/MAS. If the spooler
is already active, 'FILE ALREADY EXISTS' error message is displayed.

The module will load into the 52ffH - 5FFFH region, relocate itself to HIMEM-
areasizel+l, and sets HIMEM = HIMEM-areasizel where HIMEM is the DOS high mem-
ory address contained in Model I locations 4P49H — 4@4AH (Model III locations
4411H - 4412H) and areasizel is the amount of memory required by the spooler.
Then ‘the keyboard vector at 4Pl6H ~ 4@17H and the printer vector at 4@26H -
4927H are intercepted to vector to the spooler. If interrupts are to be used,
a routine is entered into NEWDOS/8f's 25ms interrupt chain of user interrupt
routines. 'SPOOLER ACTIVE' is displayed, and the 4@2DH exit is taken to DOS.

The spooler is now active. All data intended for the printer will be directed
to one of five disk files (POOLl, POOL2, POOL3, POOL4, POOLS). Why five files
you may ask? Well, when you have "printed" as much data as you wish and would
like that data to be actually printed on the real printer, you send an end-of-
file to ASPOOL. This is done either via DOS command *ASP,W (CMD"%ASP,W"
from BASIC) or by outputing to the spooler a #3 byte in the normal print stream

6-21 ADDITIONAL PROGRAMS

(LPRINT CHR$(3) from BASIC). The file that was spooling will be closed and
scheduled for printing. You may now spool to another file by just "printing"
more data. The data will be placed on the disk while the first data file is
being printed. This procedure may be repeated five times. Tf .you try to spool
a sixth file before the first has been printed on the real printer, the system
will display 'SPOOL FULL. WAITING ON PRINTER' and will hang until a file is
printed. All data is printed on the real printer in the background while the
current or another main main task is executing or simply while the system is
waiting for the user to tell it what to do next. Whenever %ASP,W is executed
or a 93 byte is seen in the output to the spooler, the spooler program con-
siders this an end of file (performing top~of-form if specified) even though
you may be sectioning your spooled output for one report to keep the printer
going and avoid running out of space. :

Warning!!! The Model III ROM routine, normally used by the spooler, will dis-
card the current character being sent to the printer if it senses the printer
is not ready (including busy) and the BREAK key is pressed. Since the execut-
ing foreground program may be using the BREAK key while the spooler is printing
in the background, there will be times when printer characters will be lost,
unknown to the spooler. This can serious limit the usefulness of any spooler
on the Model III that uses the ROM printer driver routine.

You may bring the spool system down gracefully at any time by the DOS command
*ASP,S (CMD"*ASP,S" from BASIC) or by sending a #4 byte in the normal output
to the spooler (LPRINT CHR$(4) from BASIC). This procedure will purge the
current spool file, will prevent any new files from being created, and will
display 'SPOOL STOPPING'. Main program execution then continues, any charac-
ters sent to the spooler will be ignored and the spooler continues to print any
files that have been scheduled. When all files have been printed, the *ASP,P
function is performed. NOTE, if the spooler appears to hang, it is probably
waiting for the main program to check the keyboard. If the main program can't
do this, try DFG, but wait till the drives stop.

You may bring the spool system down abruptly at any time by entering DOS com-
mand *ASP,P (CMD"#ASP,P" from BASIC). All remaining spooled data is lost. If
an interrupt routine was active, it is purged. The keyboard and printer
vectors are restored to what values they were when the spooler activated. If
DOS's HIMEM value is the same as that set by the spooler when activated, HIMEM
is set back to what it was before the spooler was activated, thus reclaiming
the spooler's main memory. However, it the HIMEM is not the same, HIMEM is not
changed, and the spooler memory remains lost to subsequent main programs.
'SPOOLER PURGED' is displayed, and the DOS 4P2DH exit taken to DOS.

You may flush the print queue at any time by entering DOS command *ASP,C
(CMD"*ASP,C" from BASIC). The spooler will respond with "CLEAR BACKLOG OR
PRINT (B/P)?". Respond with a B and Enter if you wish to clear the backlog, or
a P and Enter to stop printing the current print file. Clearing the backlog
does not purge the current print file, and clearing the current print file does
not purge the backlog.

The status of the spool system may be determined at any time by entering the
DOS command *ASP (CMD"#ASP" from BASIC). The system will print a list of all
files waiting to be printed (BACKLOG) and any file that is open for printing or
spooling. If the system has been stopped but not yet purged, "SPOOL STOPPING"
will be displayed. Tf the spooler has been purged or not activated, 'FILE NOT
IN DIRECTORY' is displaved.

ADDITICHAL PROGRAMS G =22

7. DISK DASIC, NON-1/0 EJNHANCKMENTS.

7.1. For NEWDOS/8f most, but by no means all, of the interface specifications
between BASIC and the BASIC programmer remain the same as for DISK BASIC under
TRSDOS 2.3 on the Model I and for TRSDOS 1.3 on the Model III. The NEWDOS/ 8¢
BASIC user is expected to have and be knowledgeable of both the non disk BASIC
manual and the disk BASIC portions of the TRSDOS manual for whichever of the
two TRS—-8f models is being used. The current and next chapters of this
NEWDOS/8f version 2 documentation discuss only the differences from the TRS
versions. Both the Tandy manuals are excellent; if they didn't come with your
TRS-8p when you bought it, buy them!!!! Apparat does not, in this manual,
duplicate their contents.

7.2. General Comments

1. When a BASIC syntax error occurs, BASIC does not automatically enter
EDIT on the offending text line, but it does set that line as the current
line. 1If the operator wishes to edit the line, press comma. This change
is to make it more difficult for the operator to inadvertantly clear vari-
ables that he/she would otherwise want to see to assist in debugging.

2. BASIC programs may disable the BREAK key via CMD"BREAK,N", and reen-
able it by CMD"BREAK,Y". . :

3.' Because CLOAD does a NEW funtion between consecutive bytes from tape,
it will lose synchromization if BASIC is running with more than 3 file
areas.

4. VWhen a DOS error is encountered by BASIC and if no ON-ERROR routine is
active, both the DOS error message and the BASIC error message are dis-
played.

5. BASIC now has a total of 8 overlays that it uses. The user will
notice that disk I/0 occurs whenever RUN is executed and whenever exe-
cution is interrupted (STOP, error or BREAK) or terminated (END); this is
done to bring in BASIC routines needed for the current or anticipated next
function.

6. NEWDOS/8¢ DISK BASIC does NOT allow text line deletion to be done by

simply typing in the line number. The explicit delete command, DELETE or
D, must be used.

7-1 DISK BASIC NON-I/O

7.3. DISK BASIC is activated by keying in one of the following commands to
DOS:

1. BASIC

2. BASIC *
3. BASICn
4, BASIC m

5. BASIC cmd v
6. BASIC n,m,cmd
7. BASIC m,n,cmd
8. BASIC n,m ‘
9. BASIC m,n
1#. BASIC n,cmd
-11. BASIC m,cmd

where:

* means the user wants BASIC to reinstitute the program in the text
buffer, using the same values for m and n as appear to exist in main
memory. This allows the user to recover from an unwanted 'reset' or to
get back to the same program after a CMD"S". If BASIC is able to accom-
plish this, it forces 'LIST' as its first command. If BASIC is unable to
reinstitute the program, it exits to DOS READY. BASIC * will not work if
n was less than 2 or if the program was less than 3 lines.

n = the pumber of fileareas that BASIC is to allocate, default = 3, max-
imum = 15. This is the highest fan (filearea number) that will be used in
any statement during this invocation of BASIC. 1If the BASIC program is to
use field item files with standard record length not equal to 256, then n
must be specified and must be suffixed with the character V (see example 4
‘below).

m = memory size. The value m minus 1 is the highest memory location that
BASIC is allowed to use. If m is not specified, the current DOS HIMEM
value is used. All memory m and above is not used by BASIC and can be
used for other routines such as printer drivers, special code USR
routines, etc.

cmd = one line of BASIC text, consisting of one or more BASIC statements.
This text line is considered direct keyboard input and will be executed as
soon as initialization is completed.

Remember, the DOS command activating BASIC is limited by DOS to a maximum of 8¢
characters, including ENTER, and it is further limited to 32 characters, in-
cluding ENTER if invoked via 'AUTO'.

Any error encountered during initialization causes a return to DOS.

If DOS is in RUN-ONLY state, the DOS command activating BASIC must contain a
RUN or a LOAD (option R) statement.

Examples:
1. BASIC Brings up BASIC with 3 file areas, high memory set to the
current value for HIMEM in DOS and displays 'READY', waiting for the

operator's cormand.

DISK BASIC NON-I/0 7-2

Z. BASIC,RUN"XXY/BAS™ Erings up BASIC with 3 file areas, high memory
set to the current DOS HIMEM value, loads BASIC program XXX/BAS into the
text area and starts its execution.

. 3. BASIC,9,48152,L0AD"XXX/BAS" Brings up BASIC with 9 file areas, high
meémory set to 48151 (1 less than 48152), loads BASIC program XXX/BAS into
the text area and displays 'READY!, waiting for the operator's command.

4. BASIC,3V This works the same as example 1 above, except that each
of the 3 files areas is assigned an extra 256 byte buffer. This extra
buffer per filearea is needed if the program will be using field item
files with a record length other ‘than 256.

5. BASIC,CLEAR3PPP :A=1:RUN"XXX" vV Brings up BASIC with 3 fileareas,
sets its high memory value to DOS's current HIMEM value, performs CLEAR
reserving 3Pf#P bytes for the string area, sets numeric variable A equal to
1, loads BASIC program XXX and commences its execution without clearing
the variables, thus leaving variable A intact for the program to inspect.

7.4. NEWDOS/8f DISK BASIC allows the following 'direct' commands:

. (period) LIST the current text line.

down~arrow LIST the next text line. If there is no next text line,
‘ performs as [.
' up—-arrow LIST the text line before the current line. If none,

performs as ; .
3 or shift-up-arrow LIST the first text line.
/ or shift-down-arrow LIST the last line in text. Users having the

newer ROM will find that shift-down-arrow is no longer a useable key;
hence the need for /[.

: Scroll onme display page toward the start of the text. When done, the
Previous current text line is now at the bottom of the display excepting
that if the previous command was or » the previous display's top

line is now the new display's bottom line. The new current text line is
the bottom line on the new display.

@ Scroll one display page toward the end of text. When done, the pre-
vious current text line is now the at the top of the display, and the new
current text 1ine:is the bottom text line on the new display.

"s (comma) -EDIT the current text line.

Only 1 such command per direct statement line, and the command, to be seen,
must be the first character of the input line (no line number or backspacing

.allowed) .

7-3 o DISK BASIC NON-I/0

7.5. FKEEWDOS/8) DISK BASIC allows the truncation of the commands AUTO, DELETE,

EDIT and LIST to A, D, E and L respectively when the following conditions are
met:

1. 1st character of the input line.
2. ~Followed by either a period or a decimal digit.
3. The input line does not contain an =,

7.6. DI and DU Two additional BASIC text editing functions are implemented
using the following forms of direct command:

1. DI aaaaa,bbbbd
2. DI .,bbbbb
3.. DU aaaaa,bbbbb
4. DU .,bbbbb

where:

aaaaa is the line number of the text line to be moved or duplicated, and
bbbbb is the line number to be given the moved text line or the duplicate
of the text line.

DI means to deleteAthe line at aaaaa and insert it at bbbbb.

DU means insert at bbbbb a duplicate of the text line at aaaaa, but do
not delete the line at aaaaa.

Text referring to aaaaa is not altered to refer to bbbbb. If this is
desirable, then use RENUM to move the text line.

The use of a period in place of aaaaa causes aaaaa to default to the last
line listed, edited or deleted.

7.7. RON and LOAD may now optionally retain all variables and open fileareas
by using the V option in the following formats:

RUN"filespecl",V
LOAD"filespecl",V

where filespecl is the filespec of the program file being executed. The LOAD
with the V option executes exactly the same as the RUN with V option. The RUN
with V option perserves all the variables, excepting DEFFN variables, during
the execution of RUN; thus the variables existing before the RUN statement can
be used after the RUN statement. Any fileareas open prior to the RUN are left
open for use after the RUN statement. If the V option is specified, the R
option may not be. See example 5 in section 7.3.

DISK BASIC NON-1/0 7-4

7.8. The MERGE statement has been expanded:
MERGE will merge either an ASCII or a packed text file.
MERGE may be executed as a direct statement or as a program statement.

If MERGE is executed as a program statement, the MERGE statement must not
be part of a DEFFN statement, a subroutine or a FOR-NEXT loop (as a POPS
function is implicitly performed), must be the last statement of the text
line, must be followed by the text line where execution will continue
after the MERGE, and the merge file must not contain a line whose number
is the same as the number of a text line existing at the start of the
execution of the merge (use CMD"F",DELETE to delete conflicting text lines
before executing the MERGE). The merge protects all variables. The user
must assure enough main memory space is available for the merge as error
recovery is not possible if the merge fails once actual merging commences.

Example:
100 MERGE"XXX/BAS"
110 X=1 execution continues here after the MERGE is completed
7.9. RENUM Renumber the Current BASIC Program.
RENUM sssss,iiiii,ppppp,qqqqql,U][,X]
RENUM ,
RENUM U
RENUM X
RENUM U,X

The current BASIC program or a part of it may be renumbered while it resides in
the text area. Via the U option, the RENUM does not actually perform renumber
but only does its text error checking, thus allowing the undefined line numbers
and some, but not all, syntax errors to be found. The user may, by proper
choice of the new line number values, move a portion of the program to a dif-
ferent place in the program with all references to any of the moved lines
changed to the new lines numbers. Lastly, via the X optiomn, RENUM will not
declare as an error any undefined line number if that line number lies outside
of the range of lines being renumbered, thus allowing a program to have ref-
erences within it to lines that are intentionally not part of the program.

The basic renumber command causes all text lines whose line numbers are greater
than or equal to ppppp and less than or equal to qqqqq to be assigned new line
numbers. sssss is the first new line number assigned with subsequent numbers
generated by adding -iiiii to the line number of the previous text line. sssss
and 1iiii must be in the range 1 - 65529 and have default value 1. ppppp must
be in the range 1 - 65529, has default value §. qqqqq must be in the range 1 -
65529, greater than or equal to sssss, and has default value 65529. The range
of newly generated line numbers must not encompass any old text lines that are
not part of the resequenced range PPPPP — 94qqq inclusive. So long as this
rule is observed, the newly generated line number range may be placed anywhere
in the text with the renumbered text moved to the proper new text location.

7-5 DISK BASIC NON-I/O

At least one parameter must be specified. If the user wants to specify all
defaults and neither X nor U, then use a comma as the only parameter.

For the series §8655,11111,ppppp,qqqqq, if one or more of the 4 numbers are to
use the default values, then commas must appear in the proper place to indicate
which of the 4 values a given line number is for. See example 4 below.

If the U option is specified, the text is not altered in any way and RENUM
simply searches text for undefined line numbers and for some errors associated
with BASIC statements that use line numbers. These errors are displayed in the
following format:

sssss/U - there is no text line sssss.
665856/X -~ text line sssss has syntax error.
ss8s5/S - text line sssss has a bad line number.

If the X option is specified, references to non-existent text lines are not
displayed as errors if that line number is also outside of the PPPPP to qqqqq
range. The X option is intended as aid to programmers who use a base program
and overlay programs which refer to text lines in each other.

If any error is encountered before text is altered, the command reverts to
performing as if the U option had been specified and displays all the errors it
can find. If an error is encountered after text alteration begins, 'FATAL
ERROR. TEXT NOW BAD' is displayed and the 4@3PH exit taken to DOS. The BASIC
text must not be reclaimed (don't use BASIC *).

If either SYS11/SYS or SYS13/SYS are not in the system when RENUM is executed,
the system will exit to DOS READY (see section 5.5).

RENUM will refuse to renumber a Program whose first text line's number equals
f. Use 'DI' to assign the line a number other than #. Examples:

l. RENUM U The BASIC text is checked for undefined line numbers and
other errors that would normally be encountered in an actual renumber.
The BASIC text is not altered.

2. RENUM , The entire BASIC text is renumbered using an increment of
1§. The first text line is assigned line number 1§, the 2nd assigned linpe
number 2@, and so on.

3. RENUM 194,109 The entire BASIC text is renumbered using an incre-
ment of 1Pf. The first text line is assigned line number 1f¢§, the 2nd is
assigned 2PP, and so on.

4. RENUM 2§59,,2050,3169 All text lines from and including any line
numbered 2p5¢ to and including any line numbered 3168 are renumbered using
an increment of 1f#. The first renumbered line is assigned line number
2p5¢, the second is assigned 2069, and so on.

5. RENUM 39ppp,5,15365,18112 All text lines from and including any
line numbered 15365 to and including any line numbered 18112 are renumber—
ed using an increment of 5. The first renumbered line is assigned line
oumber 3#@PP, the 2nd is assigned 3#9P5, and so on. The renumbered texr
lines are moved to the new positions in the text.

DISK BASIC NON-I/O 7-6

wEey

7.18. PREF The BASIC stutezent REF allows the BASIC progracmer to
places in the program where z linpe number, an integer, a variable, a
function code, a pached sequence of characters or an unpacked sequen
characters is referenced. REF has the following formats:

g all
ng, a

0.
bt

fin
str
ce o

by b

‘ 1. REF® Display full reference list for all line numbers, inte-—
gers and variables.

2. REFS Print on the printer a full reference list for all lige
numbers, intergers and variables.

3. REFmn Display all references to the variable(s) named nn. If nn
is only 1 character, a blank is assumed for the second. 1nn may not be
more than 2 chars and must not have a type suffix.

4. REFsssss Display all references to the line number and/or integer
58888 where 56565 is a 1-5 decimal digit number between $ and 99999.
Hexidecimal or octal references within the text are not listed.

5. REF*ﬁn

6. REF$on N
7. REF*sssss

8. REF$sssss

9. REF Display the next text line containing at least cne refer-
. ence to the variable or number specified by the last REFnn or REFsssss

g statement executed. If there are mno more referencing text lines, 'TEXT
END' will be displayed. If 'REF' entered again, the first referencing
text line will be listed. Remembrance of the search variable name or
number and the current search line number within the text is usually (but
not always) lost when any command involving DOS is executed.

1f. REF=xxx The character sequence xxx is packed by the standard BASIC
text packing routine. The BASIC text is then searched for a match on the
packed xxx value and the line numbers listed for all lines containing the
packed xxx value. If the packed value xxx is more than 16 bytes long,
only the first 16 packed bytes participate in the compare. This format of
REF is to used when the user wants to know where in the text a BASIC fun-
ction code (i.e., PRINT, LPRINT, GOTO, etc) is used. The text lines con-
taining xxx can be displayed one at a time by repeated issuance of the
format 9 REF command.

11. REF"xxx This format operates similar to format 1§ except that xxx
is not packed: xxx is considered a string unless xxx itself contains a ".
This format allows xxx to be found in strings and comments.

‘12. REF@sssss . This statement is similar to format 9 except that the
search will start with lst text line whose line number is greater than or

equal to sssss. ’

. Press BREAK to pause, ENTER to continue, and up-arrow to terminate the REF
function. Formats 5-8 are the same as 1 and 2, except listing/printing starts

7-7 DISK BASIC NON-1/0

with the specified variable name or decimal number, if it exists, or the next
higher existing name or number, if not. '

If SYS12/SYS is not in the system when the REF statement is executed, the
system will exit to DOS (see section 5.5).

7.11. Text String Lower Case Suppression (Model I only) Users who do not
have the hardware lower case modification or those that do but don't use a
lower case driver to bypass the ROM display routine will occasionally be
puzzled why some string compares fail and syntax errors appear imn perfect
appearing statements. This is due to the acceptance of lower case letters into
strings which display as upper, and the acceptance of lower case @ into text
statements. Remember the ROM swaps lower case to upper and vice versa before
BASIC sees the characters. In the case of data, there is nothing that can be
done about this problem except to remember that if it appears equal on the
display, there still may be a lower casef/upper case mismatch in memory. For
text input, if system option AS = Y, text string lower case letters, but not
lower case @, will be forced to upper case, eliminating many of these problems.

7.12. RUR-ONLY For DISK BASIC there are two ways BASIC can be forced to run
in RUN-ONLY mode: (1) if system optiom AB = Y, and (2) if the BASIC program
file is password protected, passwords are enabled, the access password spec—
ified in the RUN or LOAD (option R) statement and the access level = EXEC.

1f system option 4B = Y, the DOS command activating BASIC must contain the
necessary RUN or LOAD (option R) statement to start a program executing as the
operator is mot allowed to input any direct command statements.

In RUN-ONLY, the BREAK key is disabled and BASIC is inhibited from accepting
direct statements (data is OK) from the operator. The program has full con-
trol, and must exercise it. A menu program can issue RUN or LOAD (option R)

_ statements for other BASIC programs, and those programs can do the same toO

return to the MENU program or go on to the next program of a sequence. Op~-
tionally, a base program may remain in memory at all times, and via CMDYF",
DELETE and MERGE, bring in overlay programs as necessary. Programmers should
carefully study available options under RUN, MERGE, LOAD, and CMD"F functions.

7.13. Comparisons in the use of the fumction (MD between NEWDOS/80 and TRSDOS.

1. CMD"A™ Not implemented; use CMD"S".

2. CMD"™B"™ Not used on the Model I by NEWDOS/80 nor TRSDOS. TRSDOS'
Model III use is not implemented in NEWDOS/80; use CMD"BREAK,Y/N'

3. CM4D™C" This command (1) compresses out all spaces from the program
text, excepting for those within strings, and (2) deletes all remarks from

DISK BASIC NON-I/0 7-8

the text, including entirely those lines which are entirely remarks. The
statement CMD"C",S compresses out all] fpaces from the program tex:t, ex-
cepting those within strings and remarks. The statement CMD"C'" R dele-
tes all remarks from the text, including deleting entirely those linec
which were entirely remarks.

In some cases, GOTO, GOSUB, etc. refer Lo a text line that is entire-
ly remarks and the deletion of remarks from the text will cause these
referenced lines to disappear. The programs should be altered to have
these GOTOs and GOSUBs refer to text lines that are not entirely re-

marks. After remarks have been deleted from a Program, execute

RENUM U to determine if there are any undefined linpe numbers result-

Though BASIC is designed to ignore spaces that are not in text
remarks or character strings, the removal of spaces from text can
still cause confusing situations. For example, compressing

19 FIELD 1, 2p As cs

'2¢ IF F OR D THEN 1
to

1§ FIELDI1,2pAsc$

2¢ IFFORDTHENI@

after either (1) the program has been stored in ASCII and then read
back in or (2) the limes have been edited. To avoid these problems
that may exist for weeks or months before either of the above two
conditions occur, the CMDM (" function automatically unpacks each
compressed text line, packs it again and compares the new packing
with the old that existed before the spaces were compressed out. For
any text line where the two packings are different in any way, the
Spaces are restored into that text line (remarks, if deleted, remain
deleted) and the linpe's number is listed on the display. The user
may then inspect these lines and remove spaces that won't affect the
program. For any given program, there should be very few lines
rejected by CMD"C".

4. CMD™D"™ TRSDOS' meaning is not implemented on the Model III under
NEWDOS/8@; use CMD"doscmd". On the Model I, CMD"D" still invokes DEBUC
though 123 is the preferable method.

5. CMD™E" Displays the DOS error messaged associated the latest DOS
eérror encountered by BASIC.

6. C"F" Not used in TRSDOS. 1In NEWDOS/ 88, there are two formats:

l. CMD"F",fc used when the function code fc must be findable by
REF, RENUM and others.

2. CMD"F=fc" used when the function code fec is not to been seen by
REF, RENUM, etc. or where the specially defined function code could
be confused by the normal text packing routine.

These CMD"F functions are specified in sections 7.15. thru 7.20.

7-9 DISK BASIC NON-I/0

7. CMD™I" \Not used on the Model I by either NEWDOS/80 or TRSDOS.
TRSDOS' Model III use is not implemented in NEWDOS/8f; use CMD"dos-cmd".

8. OCMD"J™ Calendar Date Conversion.
CMD"JIY,datel ,date2
converts the expression datel to the appropriate format and stores
the result in the string variable date2. If datel is in mm/dd/yy

format, date2 is stored in ddd format and if datel is in -yy/ddd
format, date2 is stored in mm/dd/yy format where:

mm is a two digit month value between $1 and 12.

dd is a two digit day-of-the-month value between @1 and 31.

ddd is a three digit day-of-the-year value between #f1 and 366.

yy is a two digit relative year-within-century value between 9 and

99, For leap year conversions, yy is assumed to be in the 29th
century, i.e., from 1989 to 1999.

9., CMD"L™ TRSDOS Model III meaning not implemented in NEWDOS/8@; use
CMD"LOAD, filespec". This function is not used on the Model I.

19. CMD™0™ Array Sort; see discussion below (sectiom 7.21.) for CMD"O".

11. CMD™P" Not used on the Model I. TRSDOS' Model III meaning is not
implemented in NEWDOS/8@; use PEEK(&H37E8) to obtain the § - 255 value for
the current printer status.

12. CMD™R" TRSDOS' Model III meaning is not implemented in NEWDOS/8@;
use CMD"CLOCK,Y". On the Model I, CMD"R" still reemables the interrupts
as before.

13. CMD™S™ Exit BASIC and return to DOS READY state. However, if the
command is of the form CMD"S=doscmd", then the following occur:

1. The DOS command doscmd is moved into the DOS command buffer.
2. BASIC exited.

3. The DOS command placed into the DOS buffer is executed imme-
diately without an intervening DOS READY.

4. When that command is completed, control returns to DOS READY and
not to BASIC,

14, CMD™T"™ TRSDOS' Model III meaning is not implemented in NEWDOS/8@;
use CMD"CLOCK,N". On the Model I, CMD"T" still disables the interrupts as
before.

15. CMD™X"™ Not used on the Model I by NEWDOS/8@. TRSDOS' Model III
meaning is not implemented; use the REF command.

16. CMD"™Z"™ Not used on the Model I by NEWDOS/8@. TRSDOS' Model III
meaning is not implemented; use CMD"ROUTE,...".

DISK BASIC NON-I/O 7-10

7.14 CMD"doscmd™

If the string expression associated with the CMD function has two or more char-
acters and does not start with either "§=" or "F=", then the string is assumec
to be & command to be executed by DOS. BASIC moves the command to DOS' command
buffer, sets DOS to MINI-DOS mode, and calls DOS to execute the command wvia
4419H, DOS—-CALL. Upon return, BASIC turns off DOS' MINI-DOS mode. If DOS has
rejected the command because it was not legal under MINI-DOS, BASIC then at-
tempts to reissue the command to DOS under normal mode by doing the following:

If approximately 8,PpP bytes are not available between the top of BASIC's
array areas and the bottom of BASIG's stack (which is immediately below
the string area), BASIC declares OM ('OUT OF MEMORY') error and terminates
the current statement. If the space 1s available, BASIC moves all of mem-
ory from 520fH to 7fFFH to that free area, sets itself to use stack area
799PE-71FFH and computes a checksum over the region from 71¢fH to the top
of BASIC's memory (takes about 2 seconds). Then it calls DOS to execute
the DOS command. Upon return from DOS, BASIC moves the saved region back
to 52¢PH~-7@FFH and recomputes the checksum (again, another 2 seconds). If
the check fails, this means that the DOS command executed has altered some
of BASIC's bytes; BASIC cannot continue and exits to DOS with 'BAD MEMORY!
error. '

Whichever way the command was executed, BASIC now checks the return code from
DOS. 1If an error occurred and the error message has already been displayed,
BASIC terminates the CMD"doscmd" statement with '"PREVIOUSLY DISPLAYED ERROR!
error state. If a DOS error occurred, BASIC calls 44@9H to display the DOS
error message and terminates the CMD"doscmd" statement with 'DOS ERROR' error
state. If no error occurred, BASIC continues with normal processing.

Any DOS library command or assembly language program (that will execute using
only the 52@fH - 6FFFH region and/or a non-BASIC, non-DOS region of main mem-
ory) can be executed in this fashion. SUPERZAP and DIRCHECK are two progranms
" that may be executed through CMD"doscmd". FORMAT and most forms of COPY can be
done; however, single drive, two diskette copies cannot be done as they require
the maximum amount of memory. Also, don't specify the UBB parameter in COPY.

Remember, DOS commands are limited to 8¢ characters, including the ENTER char—-
acter that BASIC will append to the doscmd string when moved to the DOS command

buffer.

User programsvare warned to leave the Model I memory area 4§8¢H -41FFH (Model
III area 4P8¢H - 41E2H) alone except where alteration is in conformance with
BASIC's current uses.

(MD"BASIC" should never be executed. If for some reason the programmer wants
to exit BASIC and return, use CMD"S=BASIC". '

Almost all DOS commands may be executed via CMD"doscmd". Examples:

1. CMD"DIR 1" list a directory

2. CMD"™COPY XXX:§ YYY:1" copy a file

3. CMD"COPY § 1 $7/1$/81 FMT" full diskette copy, with format

4. CMD"SUPERZAP" executes program SUPERZAP and return to BASIC
5. CMD"DO CHAINFIL" perform chain file functions and return

7-11 DISK BASIC NON-I/0

7.15 CQD"F=POPS", CMD"F¥F=POPR"™ and CMD"F=POPH":

If the statement is CMD"F=POPS", then all returns and FOR-next controls are
purged, leaving BASIC with no outstanding returns or nexts. When done, execu-
tion continues with the next statement. The purpose of this statement is to
allow the programmer to 'bail-out' of complex coding and return to BASIC's
first level. This avoids leaving residual informatiom in BASIC's control stack
which on recursive returns to the high level without CMD"F=POPS" will

eventually cause program failure.

If the statement was CMD"F=POPR", then the current GOSUB level is purged along
with any outstanding FOR-NEXTs for that level. This is the same as return ex-
cept control does not pass to the statement following the associated GOSUB, but
instead passes to the statement following the CMD"F=POPR" statement.

If the statement is CMD"F=POPN", then the most recently established FOR—NEXT's
control data is purged. This is the same as 'NEXT' where the loop limit is
exceeded. Execution continues with the statement following the CMD"F=POPN"
statement.

If the statement is CMD"F=POPN" vn where vn is a variable name, the FOR-NEXT
loop associated with vn is purged along with any other FOR-NEXT loops estab-
lished while vn's loop was outstanding. Execution is the same as for 'NEXT vn'
when the loop is to end. Execution continues with the statement following the
CMD"F=POPN" vn statement. The purpose of CMD"F=POPN" is to allow breaking out
of a loop while not leaving residual loop control information that can confuse
the programmer if he/she subsequentially uses FOR-NEXT variables in reverse
order. ’

7.16. CMD"F=SASZ"™ Change BASIC's string area size without affecting or

clearing the variables.
CMD"F=SASZ", expl

allows the string area size to be changed without clearing the variables. expl
must be a value large enough allow the string area to contain the strings that
it contains when the statement is executed. An error will be generated if expl
is too small or is too large (i.e., will cause overlap with the text, scalar
and array areas). Example:

CMD"F=SASZ", 499

7.17. CMD"F=ERASE" and CMD™F=KEEP" Selective clearing of BASIC variables.

CMD"F=ERASE",vnl,vn2,vn3... allows the specified variables to be
cleared. If a specified variable is within an array, the entire array is
cleared. The size of the string area is not changed. This statement
should be used when an array 1s no longer needed or the user wishes to
redimension it by a subsequent DIM statement. This statement may be

DISK BASIC NON-I/0 T=~12

multi-text lines cs described for CMDV"F=KEEP" bLelow.

{4

CD"F=XZEP",vnl,vn2,vnl... causes all variables to be cleared except
those specified and except specially defined variables such as those de-
fined by a DEFFN statement. The size of the string area is not changed.
If no variable names are specified, all variables are cleared, except the
special ones. If a specified variable name is within am array, the entire
array is exempted from the clear. The statement may specify as many var-
iable names as desired with overflow from one text line to the next non-
comment text line taking place whenever the last variable name of a text
line is followed by a comma. Example:

CMD"F=KEEP",A$,BZ,C,D#, 'statement first line

E!,F,GS, 'statement 2nd line
REM this line is bypassed
E!,I 'statement last line

7.18. QID"F",DELETE Dynamic deletion of text lines:
CMD"F",DELETE 1nl-1n2

This statement allows the text lines from and including any line numbered 1lnl
to and including any line numbered 1ln2 to be deleted during program execution.
All variables are retained, excepting that DEFFN variables for DEFFN statements
in the delete range are cleared. ~The string area size is not changed. Any
string variable whose current string was actually in the deleted text area has
that string moved to the string area. CMD"F",DELETE must not be executed as a
direct statement, must not be contained in a DEFFN statement, a subroutine or a
FOR-NEXT loop (as a POPS functiom is implicity performed), must be the last
statement on its text line and must be followed by the text line where execu-
tion will continue after the delete. Example:

1¢$ CMD"F",DELETE 195p9-15999
119 x=1 execution continues here after the DELETE is completed

7.19. CMD"F=SHAP" Swapping of variable contents:

CMD"'F=SWAP",vnl,vn2
This function swaps the value of variable vnl with that of variable vn2. Both
variables must be of the same type, i.e., both strings, both single precision

floating point, etc. Example:

CMD"F=SWAP" ,A$,B$

7-13 DISK BASIC NON-I/0

7.20. CHD"FP=SS" BASIC single stepping:

1. CMD'F=SS" turn on single stepping
2. CMD"F=SS",1nl single stepping starts at lime lmnl.
3. CMD"F=SS",N turn off single stepping.

The BASIC programmer may now single step through program execution. Using
either format 1 or 2 above sets BASIC into single step mode, though for format
2, actual single stepping does not start until text line 1lnl is the next line
to be executed. A single BASIC text line is executed for each step, and be-
tween steps the line number for the mext line to be executed is displayed in
'Gonnnn' format in the display upper right cormer to indicate that BASIC is
waiting for the operator to respond. Responding ENTER causes line nnnnn to be
executed and then BASIC waits for user response again. Responding BREAK causes
execution to be broken in the normal manner though it should be noted that the
line number the BREAK shows is for the lime just executed or being executed
while the '@onnnn' display is for the next line to be executed. If the user
does not change text during BREAK, the program may be continued via CONT; in
this case, the 'Gonnnn' display will immediately reappear without execution of
a line. Pressing ENTER will then execute the line. While in BREAK, the oper-
ator may turn single stepping on or off as desired without affecting the abil-
ity to CONT. If the BREAK occurs before RUN or LOAD,R executes one text line,
CONT will not work.

Single stepping or the scheduling of the single stepping to start whem a par-

ticular text line is encountered remains in effect until either CMD"F=SS",N is
executed to turn it off or until a format 2 type stepping command is executed,
wherein stepping goes off until the specified line is encountered. The execu-
tion of RUN, LOAD, NEW, etc. does affect single stepping state.

7.21. CMD"™0" The main memory BASIC array sort has 2 formats:

1. CMD"0",m,avl[,av2,....] (direct sort)
2. CMD"0",n,*iavl,av2[,av3,...] (indirect sort)

In explaining this sort, the term REN is used and is defined to mean a Relative
Element Number identifying an array element. The elements within any BASIC
array, regardless of dimension, are integer numbered from # up. If an array
has only one dimension, then an element's REN is simply the value of its sub-
script and if you use only single dimensioned arrays, you can ignore the rest
of this paragraph. However, if you use multi-dimensional arrays, then you
should know which method to use to increment array subscript values in order to
extract elements in the sorted order. CMD"O" does not care what dimension the
arrays have; it simply counts off the array elements in the order BASIC stores
them in main memory. You, the programmer, do care as you must use subscripts
in order to access the array elements. For multi-dimensioned arrays, the rule
for computing the REN is complex and can best be illustrated by a three dimen—
sion array example using two statements:

DIM A(RL,R2,R3)
Y = A(X1,X2,X3)

DISK BASIC NON-I/O 7-14

where the REN of this element is computed as XI+XZ*(RI+1)+X3~(Rl+1)#*(r2+1).
the array had only two dimensions, then the REN would be A1+X2%(R1+1), znd,
course, if the array had only one dimension, the REN would simply be XI.

Pty by

[TS R

If the CMD"Q" statement specifies more than one array, excluding iavl, then the
RENs for the first sort item in each array, excluding iavl, must be equal.

The sorting order used has one level for each array specified, excluding the
iavl array, with highest to lowest level in the order, left to right, of the
array variables in the CMD statement. Within each level, the normal sort order
is ascending ASCII (actually hexadecimal) numeric value for character string
arrays and most negative to most positive value for numeric arrays. However,
if the array variable in the CMD statement is prefixed with a minus sign
(example: =-A#(P)), then the order of sort within that level is descending
ASCII (actually hexadecimal) numeric value for character string arrays and most
positive to most negative value for numeric arrays. A null compare string
character is considered to have a numeric value less than §.
. . ”

Normally in character compares, the entire string is used in the compare.
However, if the array variable in the CMD statement is suffixed with a field of
the form (x,y) (Example: A$(1)(5,4)), then the compare starts with the xth
character of the string and compares using only y characters. ,

n is the number of elements in each of the arrays participating in the sort.
Only n elements from each array participate in the sort. Elements of an array
below or above the n elements specified do not participate. If n is a zero
value, then for the 80rt, n is set to the number of elements in first array
specified from and including the element specified through and including the
last element of the array.

1f the number of elements in any array from and including the specified element
to and including the array's last element is less than n, FC error is declared.

A maximum of 9 arrays may be specified. All array variable subscripts, except
for the indirect array if specified, must evaluate to the same REN value.

Format 1 is a direct sort meaning that the elements of all 1 to 9 arrays are
moved around to comform to the desired sort order.

avl must be specified; av2 and up are optional.

The resulting order of the n elements in each array is the same for each
array (i.e., the arrays are not sorted independently). Thus, if the jth
element of array 1 is sorted into the kth element slot, then for each of
the other arrays, if any, the jth element is also placed into the kth
element slot. : '

Format 1 is compatible with TRSDOS Model III BASIC CMD"O" if and only if
only one array variable is specified, it is for a string array and n is an
integer variable. :

Format 2 is an indirect sort. In this sort, only the n elements of array iavl

are altered; the other arrays are not changed in any way. The intent of format
2 is to allow a sorted sequence to be determined without actually changing the

7-15 DISK BASIC NON-I/O

arrays supplying the sort values. A uger wmay have a group of data records

spread 4Cross a number of arrays such that g record consists of one element
from each array, with the REN of each of those elements making up the record
equalling the record number, By using format 2 with the indirect array, the

Criteria and without actually Tearranging the order of the records, thus leay-
ing them in record number order,

Format 2, as opposed to format 1, is indicated by specifying the iavl
array variable, prefixed by an *.,

iavl must be an interger array variable.

av2 must be specified; av3 and up are optional.

altered.

Upon completion, the p elements of array iavl are in the desired sorted
order such that by using Successive values out of array iavl as sub-
scripts, the user WAy access elements from any of the other arrays (that

Example Program using a number of sorts:

1g DIM gms(zw), AMI(16), 1N$(109), IXZ(189), zCI(59), Ls(sg)
38 X=15

49 CMD"0", X, NM$(p)

6@ Cx»m"o",x,-ms(zs) , .

79 cm)"o",ﬂ,—mzcl),LN$<1)(5,3)

89 CMD"O",IM,*IXZ(M,ZCI(I),L$(1)

At line 4f the first 159 elements of array NM$ (elements NM$(P) to
NM$(149)) are sorted in ascending order. If any of the strings are null,
they will appear firse in the resulting array. The last 51 elements of
array NM$ (elements NM$(159) to NM$(208)) do not participate in the sort

At line 6 elements NM$(25) through NM$(174) are sorted into descending
order, with null strings, if any, appearing as the end elements of those
159 elements. The first 25 ang the last 26 elements cf the array do not
Participate in the sort,

array values are equal, by ascending order of LNS array values where only
the 5th, 6th and 7th characters of the LNS array elements participate in
the sort determination. 1If a LN$ array element has less than 5 charact~
€rs, it is considered a null for sort determination Purposes. AMI(H) and

DISK BASIC NOoN-1/0 7-16

LN$(f) do mot participate ir the scrz. Since ihe number of elements to Be
sorted was specified as §, the number of elemenis to be sorted was takern
as 1f¢, the number of elements in the AM! array {rom and including iLhse
AM(1) element to and including the last element of the array.

Line 8f contains an indirect sort. In this sort, the first 199 IXI array
elements are initialized sequentially with REN numbers from 1 to 1§§ with
IXZ(#) =1 and IXZ(99) = 1pP. These RENs are used as subscripts to index
into the ZC! and LS arrays. The sort is in ascending order, first by ZC!
array values and then, where the ZC! array values are equal, by L$ array
values. None of the elements of the LC! and LS arrays are changed in any
way. Instead of moving the ZC! and LS array elements, only the corre-
sponding REN in the IXZ array is moved. Upon completion of the sort, the
REN in IXZ(P) can be used as a subscript to index the first-in-sorted-—
order element from each the ZC! and L$ arrays, and the REN in IXZ(99) can
be used to index the last-in-sorted-order element from each the ZC! and LS
arrays. Lastly, remember that elements IXZ(1ff), ZC!(p) and LS$(9) did not
participate in the sort in any way.

7.22, RENEW Reinstate a program deleted by the command NEW.
RENEW

The BASIC direct command RENEW reinstates the BASIC program text ostensibly
deleted by a just given NEW command. All that RENEW does is set the first byte
of the text area non-zero, reestablishes the text forward queue pointers and
performs CLEAR. The previous program should thus be reinstated in the text
area, available for editing and executing. However, if at least one text line
was created or loaded since NEW, then the previous text is not reinstated.
Furthermore, if, during this BASIC invocation, the text area mever contained
any text, RENEW will never the less assume that there is text in the text area
and attempt to reinstate it with very disastrous affects to BASIC.

7-17 DISK BASIC NON-1/0

8. BASIC DISK 1/0 FNHARCEMETS 25D DIFFERIGCES.

8.1. This chapter deals with the substantial enhancements and some differ-
ences in the NEWDOS/88's BASIC's file handling over that offered by NEWDOS/2l,
TRSDOS 2.3 for the Model I and TRSDOS 1.3 for the Model III. The statements

made in section 7.1 apply to this chapter as well.

These I/0 enhancements are more difficult to understand than they are to use,
something like electricity which few understand and everybody uses. In the
long run, the enhancements will make I/0 programming easier, but the user must
remember that since TRSDOS does not have these enhancements, your programs will

no longer run on TRSDOS.

In NEWDOS/8@ version 1, appendix A of the documentation and an executable,
heavily documented BASIC program named SAMPLE@1/BAS were included as examples
and non-specification discussions of these I/0 enhancements. In version 2,
SAMPLEP1/BAS has been dropped from the diskette and Appendix B added containing
18 example programs on marked and fixed item file useage.

Chapter 8 is intended as the specifications for these enhancements; appendices
A and B contain supplementary discussion and examples. If there is a conflict
between chapter 8 and appendices A and B, chapter 8 governs.

Many terms used in this chapter are defined in the glossary in chapter 1§ which
the user will need to refer to. The reader should read through this chapter
and appendices A and B at least twice before bogging down trying to understand
any particular statement. .

8.2. To the Previously existing DISK BASIC file types, sequential which will
be called print/input, and random which will be called field item, two other
file types have been added: marked item, which has three subtypes MI, MU and
MF, and fixed item, which has two subtypes FI and FF.

Print/input (sequential) disk files and field item (random) disk files are well
specified for the Model I in the TRSDOS manual, chapter 7 and for the Model III
in the TRSDOS manual, part III. The user is expected to have studied the ap-
propriate section before proceeding further with this chapter of the NEWDOS/ 8¢
documentation. If necessary, run some test programs to gain proficiency.

A field item file (known in TRSDOS as a random file) has all of its re—
cords the same length. This length may be from 1 to 256 bytes. If the
record length is other than 256, the BASIC initialization sequence {see
section 7.3) must specify the number of fileareas to be allocated and that
number must be suffixed with the character V. Example:

BASIC,3V

will cause BASIC to allocate three fileareas with two buffers each, the
first to be used in conjunction with the FIELD statement and the second to

8-1 DISK BASIC I/0

8.3.

serve as a full sector buffer. Remember, this special V suffix is to be
used only if the intention is to use a field item file (TRSDOS random)
with a record length less than 256; otherwise the extra 256 bytes alloca-
ted to each filearea is wasted. The open statement used where the record
length ' is less than 255 is:

OPEN "R",fan,filespecl,lrecl

where lrecl is the logical record length and has a value 1 - 256.

The essential differences between the four file types are as follows:

Print/input files can only be used sequentially; field item, fixed item

~and marked item files can all be used either sequentially or randomly.

1

A;Print/input files are stored in all ASCII character format, converting all

DISK

numeric data from binary bits to decimal characters. Field item, fixed
item and marked item files all store numeric data in the binary forms,
thus usually saving disk space and data conversion time.

Print/input files are written to using the PRINT statement which is cum—
bersome to use because of the need to use the 5 character sequence ;",";
to separate two string items. Field item, fixed item and marked item
files are written to using the PUT statement with implied separation of
file items taken care of by the FIELD statement for field item files, by
the implicit or explicit item lengths specified in the IGEL for fixed item

files and by the item marker for marked item files.

Print/input files are read using the INPUT statement while field item,
fixed item and marked item files use the GET statement.

Field item files require that data be moved into the record buffer before
execution of the PUT statement. This is done via the RSET or LSET func-
tion and in the case of numeric values, also with MKDS$, MKI$ or MKSS
function. This explicit conversion is not needed for print/input, fixed
item and marked item files.

Field item files require that numeric data input from the file be conver-
ted from string representation to numeric via the CVD, CVI or CVS function
before it is used. This is not needed for print/input, fixed item and
marked item files. .

Print/input files allow a record length of any size. Field item Ffiles
allow a maximum record length of 256. Fixed item and marked item allow a
maximum record length of 4@95 bytes.

Print/input file processing transmits strings to the file without change,
but truncates leading spaces from string items when inputted from the
file. Strings in field item files are padded on either the left or the
right with spaces as necessary during the associated LSET or RSET.

Strings in fixed item files are padded on the right with spaces as neces-
sary to fill out the item to its specified length or are truncated on the
right if the actual string length excee 35 the length allowed the file

BASIC 1I/0 8-2

item. Strings in marked item files are not radded, though the string «.v
be truncated on the right if it exceeds the maximum characters allowed fer
that item. Except for this truncation, which must be specified by the
. programmer, marked item file processing is the only one of the 4 that
transmits strings completely unchanged from what they were in the corre

sponding BASIC variable.

8.4. GET and PUT statements execute in two distinct phases in the following
order:

1. File positioning phase. The position within the file is set according
to the file position parameter, the second parameter, of the GET or PUT

statement.

2. Data transfer phase. The data is transferred from main memory to the
file (PUT statement) or from the file to main memory (GET statement).

Before proceeding, it is necessary to define three terms used within GET and
PUT statements, one that existed in a more limited form in field item file GET
and PUT statements and two that are new.

8.4.1 fp File position. For each GET or PUT operation (see sections
8.8 and 8.9), the file is initially positioned according to the fp speci-
fication. fp is one of the following forms:

, 8.4.1.1. null If REMRA is valid and file record segmented,
the filearea is advanced to the next record; otherwise fp = null
performs as fp = *,° Example:

PUT 1,,1908

8.4.1.2. * ’ - The filearea position is unchanged. fp = *
cannot be used to advance from one record to the next for a record
segmented file. Example:

GET 1,*,1998

8.4.1.3. # The filearea is repositioned to REMRA (see
section 8.19). This allows the previously processed record to be
processed again. Error if REMRA currently invalid. Example:

PUT 1,#,1909
8.4.1.4. § The filearea is repositioned to REMBA (see
section 8.1f#). This allows a return to the positioning of the

previous GET/PUT with fp = null, *, #, §, rn, or Irba. Error if
REMBA currently invalid. Example:

. GET 1,$,1990
8.4.1.5. 4 See section 8.11 for psuedo FIELD statement
- - discussion.

8-3 DISK BASIC I/0C

8.4.1.6. & See section 8.9.6 for PUT, fan,&' discussion.
8.4.1.7 && See section 8.9.7 for PUT fan,é&&

. 8.4.1.8. Irba rba is an expression evaluating to a RBA

equalling the desired relative byte position within the file, range §
to 16,777,215, GET or PUT data transfer starts at the specified
location in the file. If the file is record segmented, !rba is
assumed to specify a record start position. Example:

GET 1,!11357,1¢¢9

FEIXXIXAE Use of Irba is extremely powerful and when improperly used,
quite disastrous!!!!l!!

*dkdd#*d%k the expression for fp cannot contain a function, such as
LOC, that refers to a filearea.
8.4.1.9. 1z Same concept as !rba except the current EOF

value is used as the RBA. Example:

GET 1,1Z,19¢9

8.4.1.19. 1$rba Position the file to relative file location
rba. No data transfer is done. See GET discussion, section 8.8.6.
Example:)

. GET 1,18$1354
8.4.1.11. 162 Same concept as !$rba except the current file

EOF value is used as the RBA. Exanmple:
GET 1,1$%

8.4.1.12. t#rba Set the expression rba as the mew EOF value.
See PUT discussion, section 8.9.9. Example:

PUT 1, #1354

8.4.1.13. ™m An expression that evaluates to an integer in
the range 1 - 32767 respresenting the target record's number within
the file. The filearea is positioned to the start of the record's
first item. The filearea must be open with m = I, R or D and with
ft, if specified, = FF or MF. Example:

GET 1,39

8.4.2. IGEL Item Group Expression List. A list of expressions
corresponding to a group of file items. An IGEL is a series, terminated
by a semicolon, of one or more expressions, separated by commas, corre-
. sponding to successive file items, starting at the current file position
. which was established by the GET or PUTs file positioning parameter. If,
while searching for a separating comma, the terminating semicolon or the
start of an exprrssion, a remark or EOL is encountered, the search goes on

DISK 3ASIC 1/0 8-

tce the next BASIC statement. The purpose c¢f zn IGEL is to serve as the
link between 2 group of file items and a group of BASIC variables or
expressions during the execution of a GET or PUT statement for marked or
fixed item file processing. Fxamples of IGELs {coded in BASIC) are:

1. (3p)LNS,(15)FNS,AM!,DT#(X);

2. "3", ANX, NMS$;

3. (32)As3(X,Y), BZ(2+X), C!, ES, 'Ist line
K#,FS$; '2nd line

If an error is encountered while processing an IGEL, the error line number
will refer to the line containing the associated GET/PUT statement rather
than the actual error line within the IGEL.

8.4.3. IGEL expression. One of the expressions of an IGEL. For PUT
statements, an IGEL expression specifies the value to be assigned to the
current file item. For GET statements, an IGEL expression specifies the
variable to receive as its value the value of the current file item. An
IGEL expression is of one of the following forms:

1. exp

2. (lem)exp

3. (lem)$ fizxed item files only
4, (len)#
5

. a null expression
where:

8.4.3.1. exp is the main portion of the IGEL expression. Normally,
exp names a BASIC variable, but in the case of PUT to a marked item
file, exp can be almost anything legal on the right side of a LET
statement. When exp is a named variable, either a scalar or an
array, it is STRONGLY recommended, though not required, that the
variable name be suffixed with one of the 4 type symbols ($, %, !, or
#). For example, we STRONGLY recommend:

A$,BZ(X,Y),C!,D#;
instead of
A,B(X,Y),C,D;

This recommendation does not apply to subscript variables (i.e., X
and Y in the above example).

8.4.3.2. (lem)exp is a prefixed expression with len itself an
expression evaluating to an integer $#-255. (len)exp must be used
only for IGEL expressions that are strings.

1. For marked item files, len is the maximum number of string
characters sent to the file during PUT or received from the file
during GET. If the actual number of characters is less, then
only the lesser number of characters is transferred. For marked
item files, use of the (len)exp format instead of the exp format
for string expressions is optional, though for MF files, use of

8-5 DISK BASIC 1/0

the (len)exp is recommended.

2. For fixed item files, the (len)exp format must be used for
string expressions in the IGEL as len specifies the exact number
of characters a string file item has or is to have. During PUT
statement data transfer, if a variable's string has less than
len characters, the file item (not the variable) is padded on
the right with spaces as necessary. If the variable's string
has more than len characters, the excess characters on the right
are not transferred to the file item. During GET statement data
transfer, a variable's string receives len characters from the
file.

3. Example of IGEL using (len)exp expressions:
(3p)LN$,(20)FNS,ANZ ,DP#, (2)CDS(X);

8.4.3.3. (len)$ This expression is legal for fixed item files
only. len indicates the number of file bytes to be bypassed. For a
GET the specified number of file bytes are bypassed. For a PUT on an
existing record, the specified number of file bytes are bypassed and
are not altered. For a PUT for a new record, (len)$ defaults to
(len)#. Example, in the following IGEL, the lst 1§ bytes are skip-
ped, the next 12 transmitted, the next 17 are skipped, and the last 8
are transferred.

(16)$,ANZ,(19)ST$,(17)5,DP#;

8.4.3.4. (len)# For fixed item files, for a GET, (len)# oper-
ates the same as (len)$ and for a PUT sends len zero bytes to the
file. For marked item files, for a GET, (len)# bypasses the current
file item and for a PUT, sends to the file a character string of len
nulls (hex #P characters). Example: :

(19)#,ANZ,(19)ST$,(17)#,DP%;

8.4.3.5. A null expression A null expression can only be used in
marked item file GET statement IGELs. A null expression causes by-
passing of the corresponding file item. For example, the first,
second and fourth items are bypassed in the execution of the
statement:

GET l”’)’X!!)As;
During the processing of an IGEL, if an error occurs particular to one of
the expressions of the IGEL, the error mssage will be prefixed with the

expression's position within the IGEL. For example, if the 4th IGEL
expression 1s in error, the error message will be prefixed with a 4.

DISK BASIC I/0C 8-

8.5. Fixed item file characteristics

1. Contains zerc or more iltems.

. 2. The type and length of each item 1s determined by the GET's or PUT's
associated IGEL, and is not determinable from the file itself. This is a
basic difference between fixed item files and marked item files.

A file may be subdivided into records all of the same length.

-

4., Maximum length of records is 4§95 bytes.

5. The number and characteristics of items of a record is dependent
solely upon record length and the IGEL(s) used to GET or PUT the record.

6. An I/0 link to and/or from a fixed item file is created by BASIC
statement OPEN with ft = FI or FF.

7. Via the GET statement, the contents of fixed item file items are moved
into the BASIC variables specified by the IGEL.

8. Via the PUT statement, fixed item file items are created or replaced
from the BASIC variables specified in the IGEL.

9. BASIC statement CLOSE terminates an I/0 link between the program and a
fixed item file.

19. No disk épace is skipped between successive items of a file or
. between the end of one record and the beginning of the next.

~1l. . When an FF file record is created, any unused space at the end of
the record is filled with zero bytes.

8.6. Marked item file characteristics:
1. Contains zero or more items.

2. A marked item file item always starts with a control (or marker) byte
followed by zero or more additional control bytes followed by zero or more
data bytes.

3. Marked file items have the following formats, depending upon the
hexidecimal value of the lst control (or marker) byte.

1. 8p-FF $-127 byte binary string follows.

2. 79 . SOR (start—of-record). Each record of a MU file
(marked item file segmented into records not all of the same length)
starts with this item.

. 3. ¢¢ Fill item. Used as necessary to fill out MF or MU
file records.

8-7 DISK BASIC I/0

DISK BASIC 1I/0

4. 71 Next byte contains the count ($-255) of binary string
bytes following. This is the only situation (for now) where a second
marker byte is used.

5. 72 Next two bytes are a two's complement binary integer.
This is BASIC's format.

6. 73 Next four bytes are a binary floating point number in
BASIC's format of the form:

1. Three bytes of normalized absolute value mantissa of the
form .pmmmm where mmmmm is expressed in these bytes in ascending
order of magnitude:

1. Inter-byte, left to right.

2. Iatra-byte, right to left. Excepting that the highest
ordered mantissa's bit's position, since it's mantissa
value is always = 1, is used instead to contain the man-
tissa sign, § = + and 1 = -.

2. The 4th byte contains the base two exponent, biased 128, ex-
cept if the byte = @, then the floating point number = § regard-
“less of the contents of the other bytes.

7. 74 Next 8 bytes contain a binary floating point number
of the same format as for item type '73' excepting that the lst 7
bytes are the mantissa and the exponent is in tke 8th byte. This is
BASIC's double precision floating point format.

4. A file may be subdivided into records, either all of the same length
(MF file) or of varying lengths (MU file).

5. Maximum length of a file record is 4995 bytes. This includes all
record control, item control and data bytes.

6. If the file is divided into records mot all of the same length (a MU
file), then each record of the file starts with the SOR item automatically
supplied by BASIC.

7. Successive records in the file may contain differing numbers of items.
This will occur where the programmer has multiple record types within the
file. For files with fixed length records, care must be taken to avoid
record overflow.

8. Relatively positicned items within records of the file may differ as
to type from one record to another. This will occur where the programmer
has multiple record types within the file.

9. An I/O link to and/or from a marked item file is created by the BASIC
Statement OPEN with the ft parameter = MI, MU or MF.

1p. Via the GET Statement, the contents of marked item file items are
moved into the BASIC variables specified in the IGEL.

03]
1
co

1l1. Via the PUT statement, marked item file items are created from BASIC
variables and/or EASIC expressions specified in the IGEL.

12, BASIC statement CLOSE terminates an I/0 link between the Frogram and
a marked-item file.

13. No disk space is skipped between successive items or records of a
marked item file. However, SOR and fill items are inserted as necessary.

8.7. OPEN DISK BASIC's OPEN statement has been modified to handle the
following formats:

1. OPEN m, fan, filespec

2. OPEN m, fan,filespec, len

3. OPEN m, fan,filespec, ft

4. OPEN m, fan, filespec, ft, len
where:

8.7.1. See glossary for fan and filespec definitions. Examples of the
four formats:

OPEN "I",1,"XXX/DAT:1"

OPEN "R",2,"XXX/DAT",128
OPEN "0",1 , "X.XX/DAT: ﬂn, n}m"
OPEN IID|I,3 s "XXX/DAT", "MF", 71

8.7.2 Format 1 above is used for print/input and field item files.
Format 2 is used for field item files. Format 3 is used for FI, MI and MU
files. Format 4 is used for MU, MF and FF files.

8.7.3. m specifies the operational mode for the filearea and is an
expression evaluating to a string equal to one of the following:

1. I The filearea is open to the file for input operations only
(INPUT if ft not specified - GET if ft specified). The filearea is
positioned to the start of the file.

2. 0 If the file does not exist, it is created. The filearea
is opened to the file for output operations only (PRINT if ft not
specified - PUT if ft specified). EOF is set = f, and the filearea
is positiomed at EOF. :

3. E Same as "O" except EOF is not changed. This allows add-
ition to an existing sequential file.

4., R " If the file does not exist, it is created. The filearea
is opened to the file for GET and/or PUT operations. EOF is not
changed, file is positioned as for I. If a subsequent PUT specifies
a record at or beyond EOF, the file is automatically extended to
include that record.

8-9 DISK BASIC 1/0

5. D Same as R except that the file must already exist and a
PUT for a record at or beyond EOF is treated as an error condition.

8.7.4. ft Specifies the file type and is an expression evaluating to
a string equal to onme of the following:

1. ¥I A fixed item file not record segmented. len must not be
specified.
2. FF A fixed item file of fixed length records. len must be
specified.
3. ML A marked item file not segmented into records. len must

not be specified. Items within a MI file cannot be updated.

4. MU A marked item file segmented into records of varying
lengths, where the length is determined by searching for either EOF
or the next record's SOR item. len is optional and if specified is
used as a maximum allowable length for the MU file's records. A MU
file record may be updated provided the record length is not in-
creased beyond its original value. If the record is shortened, it is
filled out with £ill items. -

5. MF A marked item file segmented into fixed length records.
len must be specified.

8.7.5. 1If ft is specified, the following apply:

1. 1If a GET statement is to actually transfer data from the file to
BASIC variables, then the GET statement must specify either IGEL or
IGELSN. :

2. 1If a PUT statement is to actually transfer data from BASTC vari-
ables or expressions, then the put statement must specify either IGEL

or IGELSN.
3. BASIC statement FIELD must not be used.
4. The program must not alter information within the filearea's 1/0

buffer, and must not rely upon values in that buffer or in the LRECL,
NEXT or EOF fields of the FCB.

8.7.6. If ft is not specified and m = R or D, the following apply:

1. The file is a field item (random) file with specifications the
same as for Model I TRSDOS 2.3 (Model III TRSDOS 1.3) except as

otherwise noted.

2. FIELD statements must be used for proper overlay of BASIC vari-
ables into the filearea's buffer. FIELD can process 256 byte records
though any one string defined therein is limited in length to 255

" characters. The number of bytes defined by a FIELD statement is

normally equal to len, should not exceed len and must not exceed 256,

3. GET/PUT statements must not specify either IGEL or IGELSH.

DISK BASIC I/0 8-~/o

4. If len 1is not specified, len is assumed equal to 256.

5. 1len must be a value from 1 to 256. If len is less than 256, then
. BASIC must have been initialized explicitly specifying the filearea
count suffixed with the character V (see section 7.3).

8.7.7. 1lemn An expression evaluating to an integer between ! and 256
for field item files and between 1 and 4§95 for fixed item and marked jitem
files. For field item, FF or MF files, len is the standard length for
records of the file. For MU files, len is the maximum length allowed for
records of the file. Currently, the file's FPDE does not carry the cor-
rect len (LRECL) value; so the len value, explicit or implied, supplied at
OPEN is always used. Checks on len are done during GET and PUT. For MF
and MU files, the programmer must allow for the following extra bytes in
the len calculations:

1. 1 byte for each item (primary item control byte)
2. 1 byte for each string actually containing more than 127 chars.

For MU files, the programmer must allow for the-SOR item byte at each
record's start.

The number of bytes assigned to a marked file item equals the number of
marker (or control) bytes (1 or 2) plus the number of bytes used by BASIC
to contain the string or the numeric:

1. Strings: one or two marker bytes plus the actual string length,
allowing for truncation due to expression prefix. The second marker
byte is used only if the string length is greater than 127 bytes.

2. Integers: 1 marker byte plus 2 bytes.

3. Single precision floating point: 1 marker byte plus 4 bytes.

4. Double precision floating point: 1 marker byte plus 8 bytes.

For fixed item files; the number of bytes assigned to each item is
determined from the IGEL as:

1. For strings, for (len)$ and for (len)#, the number specified by
the expression prefix.

2. Integers: 2 bytes.
3. Single precision floating point: 4 bytes.
4, Double preéision floatiﬁg point: 8 bytes.
8.7.8. If the EOF in the FCB is modified by OPEN, a subsequent CLOSE or

PUT,fan,&& statement will update the new EOF into the FPDE even though no
PRINT or PUT statement was executed.

8-11 DISKX BASIC I/0

8.8. GET DISK BASIC's GET statement has been modified to handle the
following formats:

1. GET fan (fp is null)
2. GET fan,fp

3. GET fan,fp, IGELSN

4, GET fan,fp,,IGEL

where:

8.8.1. fan and IGELSN are defined in the glossary. fp is defined in
section 8.4.1 and IGEL in section 8.4.2. Examples of the 4 formats above

are:

GET 1

GET 1,39

GET 1,!X,1p09

GET 1,,,XZ,Y!,Z2#,(20)AS;

8.8.2. On successful completion of the GET statement, the filearea 1is
left positioned at:

1. For marked item file ops, the next item of file.
2. For fixed item file ops, the next byte of the file.
3. For field item file ops, the next record of the file.

8.8.3. If EOR or EOF encountered:

1. For field item file ops, the filearea buffer is set to binary
zeroes; thus giving binary zero value to all data subsequently
referenced. No error occurs.

2. For marked item and fixed item file ops, an error occurs.

8.8.4. If an error is encountered during GET processing, the filearea
control data is reset to the state existing prior to the GET statement.
The resulting contents of the variables named in the IGEL or FIELD are
indeterminant. After error correction, the statement may be executed
again.

8.8.5. 1If the GET statement specifies IGEL or IGELSN, then successive
file items are processed into successively named variables of the IGEL.
For marked file ops:

1. If an IGEL expression is null, the corresponding file item is
bypassed. '

2. An IGEL expression prefix can be used to limit the number of
characters for the string variable. If the file item has less
characters, the string length is set to the lesser value. If the
file item has more characters, the excess characters on the right are
bypassed and are not passed to the variable. '

3. As fill items are encountered, they are bypassed.

2
L}

Y Gk
R~

BASIC I/0 &-12

-

4. Type-mismatch (IM) error cccurs if the named varioiblce ~nd ti«

file item are type incompatible.
yp

5. For a record segmented file, a GET for the first item(e) may be
followed by a PUT for the rest of the item(s).

6. For a record segmented file, record overflow error occurs if GET
finds insufficient items in the record.

7. Except for the limiting effect of the expression prefix, strings
are passed from the file to the variable as is. There is no leading
blank suppression.

For fixed item file ops:

1. For each named string variable, the number of characters speci—
fied in the expression prefix is transfered from the file to the
string area.

2. For record segmented files, 'RECORD OVERFLOW' error occurs if GET
finds insufficient bytes in the record.

3. GETs and PUTs for successive data may follow one another at will
providing:

1. The user keeps good track of the current position within the
record.

2. Record boundaries are observed for a record segmented file.
For marked item and fixed item files:
The input of a record's items may be spread across two or more GETs.
8.8.6. The GET statement of the forms:

GET fan, !5rba
GET fan, 15%

allows the programmer to position the file for the next GET, INPUT, PUT or
PRINT statement for that file area. No data transfer is dome by this GET
statement. !$% means the current value of EOF is to be used as the RBA
value. Statements of this form mark REMRA and REMBA invalid. Examples:

GET 1,1$2559 positions the file to RBA 255¢
GET 1,18X positions the file to the RBA value in X
GET 2,1$Z ‘ positions the file to EOF

8-13 DISK BASIC I/0

8.9.

PUT DISK BASIC statement PUT is modified to handle the following

formats:

B W R e
*

- PUT fan . (fp = null)
PUT fan, fp
PUT fan, fp, IGELSN

- PUT fan, fp,,IGEL

where:

8.9.1. fan and IGELSN are defined in the glossary. f£p is defined in
section 8.4.1 and IGEL in section 8.4.2. Example codings of these 4
formats are:

PUT 2
PUT 1,X

PUT 3,,1¢pp ‘
PUT 1,RN!,,(28)AS$,BZ,C!,D#;

8.9.2. On sﬁccessful completion of the PUT statement, the filearea is
left positioned as done for GET.

8.9.3. If an error is encountered during PUT processing, the filearea
control data is reset to the state existing prior to the PUT statement.
The resulting data in the file is indeterminant, and will probably cause
Errors to occur upon a subsequent GET. This should be a problem only when
updating existing records, and if possible a subsequent PUT for that
record should be issued after the error condition has been corrected. To
reduce the occasions of file damage, when the file is opened m = R or D,
the IGEL is processed once in it's entirety to catch non-I/0 errors and
then again to do the actual file update.

8.9.4. If PUT specifies IGEL or IGELSN, then the value of successive IGEL
eXpressions are sent to successive items of the file. For marked item
file ops:

1. SOR and fill items are inserted into the file automatically if
and wvhen necessary.

2. An IGEL expression may be anything legal on the right side of the
equation in a let Statement, excepting functions referencing a
filearea.

3. Except for the limiting effect of the IGEL expression prefix, the
resulting string is sent to the file as is.

4. Numeric literals or éXpressions are sent to the file as the BASIC
numeric type they convert to internally in BASIC.

5. For fixed length records and updated variable length records,
each PUT statement replaces that portion of the record from the PUT's
file positioning through the end of the record, using fill items if
and as necessary. #*¥i%i*x CAUTION Any items previously existing in
relative position in the record higher than the last item written by
the PUT action are lost, as all of the record's disk space from the
last item of the PUT to the end of record now contain fill items.

IC 1/0 8-14

u
;
I
tnh
14

6., The maximum theoretical sum of bytes for a record {(the sum of
bytes used for control, for numeric data and for strings) can exceed
len (defined in OPEN, section 8.7) so long as the actual number of
bytes used during the record's PUT(s) does not exceed len.

For fixed item file ops:

For each string variable, the number of characters specified in the
required expression prefix is transferred from the variable to the
file by padding with blanks or truncating on the right done as

necessary.
8.9.5. For marked item and fixed item files:

1. The output of a record's items may be spread over two or more PUT
" statements.

2. Data 1is moved into the filearea's buffer, but is not actually
written to disk until one of the following occurs:

1. The filearea is closed.

2. The buffer is needed to contain data from another part of
the file.

3. A 'PUT fan,&' or a 'PUT fan,&&' statement is executed.

3. 'RECORD OVERFLOW' error occurs if the allowable record length 1is
exceeded.

4, See OPEN (section 8.7.7) for discussion of the number of bytes
used by numeric file items.

8.9.6. The PUT statement of the form:
PUT fan,&

allows the programmer to force the write of the filearea's buffer to disk
if that buffer contains data not yet written to disk. If the buffer has
no such data, the statement is ignored. The programmer must remember that
actual data writes to disk for marked item, fixed item and field item
(where len less than 256) files are not necessarily done at PUT time,
under the assumption that more write data may yet appear in the buffer.
'PUT fan,&' forces this pending data out to disk, and should be used
whenever any of the following conditions exist:

1. It will be some time before the file area will be used again, but
the programmer does not want to issue CLOSE. .

2. Proper interaction with other fileareas depends upon the pending
data being on the disk.

3. The data is very important.

8-15 DISK BASIC I/O

- The file area's file positioning is not affected by the PUT fan,&
function. Fxample:

PUT 3,&
8.9.7 The PUT statement of the form:

PUT £fan,&&

allows the programmer to force the write into the directory of the EOF
currently in the filearea's control data. This special PUT will save the
programmer the necessity of doing a LOC(fan)! function to remember the
current file positioning, a CLOSE to cause EOF write into the directory,
an OPEN to reestablish the link to the file, and a positioning GET or PUT
to position the filearea back to where it was. Before actually writing
the EOF to the directory, the PUT fan,&& function performs a PUT fan,é&
function. The filearea's file positioning is not altered by the PUT
fan,&& function. Fxample:

PUT 2,&&
8.9.8. The PUT statement of the forms:

PUT fan, !$SRBA
PUT fan, !$%

function identical to that for GET (see section 8.8.6).
8.9.9. The PUT statement of the form:

PUT fan, !#rba
causes the file's EOF to be set to the value of the expression rba, which
must evaluate to a RBA. Nothing else is changed for that filearea.
Remember, a CLOSE or a PUT fan,&& statement must be executed to force the
write of the new EOF into the file's FPDE. Example:

PUT 2, !#20¢9

'causés the EOF in filearea 2's control data to be set to 208p.

8.10. BEMRA and REMBA. Within each filearea's control data, BASIC saves
two additional relative file location values:

1. REMRA REMembered Record Address.
2. REMBA . REMembered Byte Address.

where:
1. The ONLY places where REMRA is used is (1) to position the file when

the GET or PUT statement has fp = # (see section 8.4.1.3) and (2) in the
LOC (fan)$, LOC(fan)! and LOC(1l)7 functions (see section 8.12).

DISK BASIC I/0 F-/6

2. The ONLY place where REMBA is used is to pesition the filc whern the
GET or PUT statement has fp = § (see section 8.4.1.4).

3. Both REMRA and REMBA are in RBA format.

4. FEach OPEN statement and each GET or PUT statement with rp = !$RBA or
1$%2 marks both REMRA and REMBA as invalid.

5. Each INPUT and PRINT statement sets REMRA to the file position exist-
ing at the start of the statement execution. REMBA is not used for print/
input file ops.

6. Each GET or PUT statement with fp = null, rn, l!rba, 1% or * (for %,
only if REMRA is invalid at statement start or if the file is not record
segmented) sets REMRA = to the file positioning resulting from that fp
value.

7. Each GET or PUT statement with fp = null, rn, !rba, !%Z or * sets REMBA
= to the file positioning resulting from that fp value.

8. Don't let the concepts of REMRA and REMBA puzzle you too much. As
stated above, there are only two places where REMRA is used (when fp = #
and for the LOC functioms) and only one where REMBA is used (when fp = $).
If you never use partial record I/0, then REMRA and REMBA are always the
same. The most common use will be in executing a PUT (with fp = #) for
the record just read.

1

8.11. Psendo FIELD Function. For fixed item and marked item files, the

FIELD statement is not legal. However, there are times when the programmer may

want to set the strings associated with an IGEL to their specified lengths and
keep them that way by using LSETs and RSETs. The user could do this by using

" the STRINGS function. Another way is to use the psuedo FIELD functiom having

the following formats:

1., GET fan,Z%Z,IGELSKN
2. GET fan,Z%,,IGEL
3. PUT fan,Z,IGELSN
4, PUT fan,Z,,IGEL

where:

1. fan and IGELSN are defined in the glossary and IGEL is defined in
section 8.4.2.

2. fan specification is required for text format protocol only. Whether
the filearea is open or what it is opened for is not of concern to this
psuedo FIELD function; this function is only concerned with the IGEL and
does not alter the filearea in any way.)

3. The IGEL is processed:

1. Numeric variables are left unchanged.

8-17 DISK BASIC I/O

8.12.
follows:

2. Expressions of the form (len)$ and (len)# are bypassed.
3. String variables in the IGEL must be prefixed.

4, String variables are assigned length = to the IGEL expression
prefix and either truncated or padded on the right with blanks as
necessary. Aside from the padding or truncation, the string contents
are not changed. However, if the string is not currently in the

- string area, it is moved there. Subsequently, LSET and RSET may be
used to move-data -into these strings.

4., Example:

© . PUT 2,,,1X%,(39)A$,DP#, (19)BS;

causes string A$ and B$ to be made into strings 3§ and 1§ characters in
length respectively, being padded with spaces or truncated on the right as

- necessary. No data is transferred to the file and file positioning is not

changed.

LOC Function. . NEWDOS/80 DISK BASIC has a LOC function defined as

1. LOC(fan) where fan is a file area number, 1 - 15, of a filearea
opened for field item, MF or FF file operationms. This function returns an
integer 1 - 32767 = the number of the previous record GET/PUT for that
file area. @ = none or REMRA invalid. Example:

PUT 1,34
X = Loc(1)

‘results:in X have the value 34.

2. LoC (fan)$ For record segmented files, this function returns -1
(IF statement true) if the start of the next record (if REMRA valid) or
the current file position (if REMRA invalid) is greater than or equal to
EOF, and returns § (IF statement false) if less than EOF. For non-record
segmented files and print/input files, this function returms -1 (IF state-
ment true) if the current file positioning is greater than or equal to
EOF, and returns § (IF statement false) if less than EOF. LOC (fan)$
differs from function EOF in that EOF tests only for exactly at EOF.
Example:

IF LOC(1)$ THEN END

ends the program execution if the next record is located at or beyond the
file's EOF.

3. LoC (fan)Z Returns an RBA equal to the file's EOF. Example,
suppose the file contains 3142 bytes:

X = LoC(1)%

DISK BASIC I1/0 §-18

i1l result in X having the value 3142.

4. L0C (fan)! For record segmented files, this function returns 2 iba
value equal to:

1. 1If REMRA valid, the location of the file's next record.
2. 1f REMRA invalid, the current file position.

For non-record segmented files and print/input files, this function
returns an RBA equal to the current file positionm.

Fxample, if the latest fully or partially processed record for filearea 1
ctarts at relative file position 1667 and the next record starts at rela-
tive file position 17@1, then

X = Loc(1)!
will set X equal to 17f1.

5. LoC (fan)# Returns an RBA value equal to REMRA. Frror if REMRA
currently invalid. Fxample, see above example:

X = Loc(1)#
will set X = 1667.

Use of LOC(fan)! and/or LOC(fan)# allows the programmer to obtain the file pos-
ition of a group of items (mon-record segmented file) or a record (record seg-—
mented file), remember it for future use, and then at a future time, reposition
the file to that data via either fp = trba or fp = !$rba. This allows pro-
grammers to build index files that index into all types of files for random
accessing.

8.13 I/0 Error Recovery. The operation of the DISK BASIC statements PRINT,
PUT, INPUT, and GET has been altered such that if an error occurs during state-
ment processing, the filearea control data is left unchanged by that statement.
This allows the user/programmer more options when an error occurs. Examples:

1. The program is outputting to a sequential print/input file. 'DISK
FULL' error occurs. EOF is returned to where it was at the statement
beginning; the file can-then be closed, and if no other files are open on
that drive, another diskette can be mounted, a new file opened for the
same file area, and then the statement in error executed again to continue
processing. later input processing can then process both files, using EOF
on the first to trigger the shift to the 2nd.

2. The program is outputting to a MU file using two or more PUTs to out-
put a single record. 'DISK FULL' error occurs on the 2nd PUT of the cur-
rent record. EOF is reset to where it was at the error statement's begin-
ning, not to record's beginning. Before switching to a new file, EOF must
be set back to the record's beginning via the following two statements:

8-19 DISK BASIC I/0

X1=L0C{fan)#: PUT fan, |#X!

Then the file area may be closed, a new diskette mounted, the filearea re-
opened, and processing continued back at the beginning for the record (not
to the beginning of the PUT). Since a MU file must always start with an
SOR item, if two MU files are used in concatenation, the lst cannot end
with a partial record in anticipation of the next containing the rest of
the record.

*k¥kikkk%% The user/programmer must use extreme caution in swapping diskettes on
one drive or in swapping a given diskette to another drive when more than the
error filearea is open for the original drive.

Also to be remembered is that though the filearea control data is restored to
what it was at the statement beginning, the file data associated with a PUT is
indeterminant, and the contents of the variables receiving data on a GET is

also indeterminant.

In order to facilitate error recovery and coding in general, BASIC uses a sepa-
rate control area to perform the GET, PUT or other filearea related operationms,
leaving the filearea's control data unchanged until the operation completes
without error. In NEWDOS8J there is only one temporary control area; a func-
tion using a filearea CANNOT be nested within another function using a file-
area, even if both file areas are the same. For example, the two statements
given above CANNOT be combined into one as:

PUT fan, !#LOC(fan)#

8.14, Some notes about NEWDOS/8@ DISK BASIC I/O.

1. For marked item and fixed item files, the programmer GETs or PUTs an
item—group of data at one time. The only limitations on the amount of
data transmitted are file size and, if applicable, record size. Logical
records can be any length between 1 and 4§95 bytes. The programmer should
never refer to the filearea buffer(s), as the contents at any time are
unpredictable. #¥¥ikdik YARNING ***x*** If the program alters data in
the filearea's buffer when a file is opened for anything other than field
item operations where FIELD was and is legal, the results are unpredic-
table and usually disastrous. Extreme caution must be used to avoid the
file damaging situations where FIELD statements have been legally used,
then that filearea used for I/0 where FIELD is not legal but RSET or LSET
functions continue to be used for one or more FIELD defined strings for
that filearea.

2. The special functions designed for field item file ops, (MKD$, MKIS,
MKS$, CVD, CVI, CVS, LSET, RSET, etc.) work as before. However, the use
of MKDS$, MKIS$, MKS$, CVD, CVI, and CVS may be dropped for marked item or
fixed item file ops as GET and PUT will transmit numeric as well as string
data.

3. For CET or PUT statements using either IGEL or

IGELSN, the programmer
aust remember that any errors detected during IGEL pro

cessing will be

recorded as ap error occuring on the line containing the GET/PUT rather
than on the actual text 1ine of the IGEL.

4. To facilitate error detection for GET or PUT statements using IGELSN,
the GET or PUT should be the only statement om its text line.

5. A file can be updated only if it can be opened R or D. MI and
print/input files cannot be updated, though of course they may be added
onto. MU file records can be updated provided the new record length does
not exceed the original length of the record. The last record of a MU
file may be extended without this restriction.

6. Fileareas open for print/input files may have GET oT PUT statements
executed for them if the fp type 18 1$rba, !$5%, t#rba, &, && oOT % .

7. BASIC functions (i.e., EOF, LOC, LOF, etc.) that use fan cannot exist
within an IGEL or within OPEN, GET, PUT, CLOSE, PRINT (to disk) or INPUT
(from disk) statements. This is a NEWDOS/3§ restriction not existing in
TRSDOS and is imposed by the error recovery operations (see section 8.13).

8. For disk files whose records can span two OT more disk sectors (files
whose record lengths are either not standard or do not divide into 256
evenly), the number of actual disk I/O's is increased up to 289% (as
compared with files whose record lengths are standard and do divide into
256 evenly) when a record or item group actually has parts in two or more
file sectors. The percent overall increase in disk I/0 is approximately
(LEN/256)%209 where LEN is the average length of records or item groups
processed, and where LEN < 256. No approximation is given for LEN 2 256.

8-21 DISK BASIC L/O

C. ERYOR CODIS5 LIID HESSAGES.

. 9.1. DOS Error Codes and Messages.

The following is a list of DOS error messages for NEWDOS/8p Version 2 corres-—

ponding to error codes placed in register A on a CALL or JP to 44@9H.

codes are listed in both decimal and hexadecimal.

]
g1
$2
p3
P4
g5
$6
#7
98
$9
1¢
11
12
13
14
15
16
17
18
19
29
21
22
23
24
25
26
27

28

29
3¢
31
32
33
34
35
36
37
38
39
49
41
42
43
YA

g9
g1
#2
93
P4
gs
pé
@7
$8
@9
gA
#B
gcC
#D
pE
gr
1¢
11
i2
13
14
15
16
17
18
19
14
18
1c

1D

1E
1F
29
21
22
23
34
25
26

27 .

28
29
2A
2B
2C

NO ERRCR

BAD FILE DATA

SEEK ERROR DURING READ

LOST DATA DURING READ

PARITY ERROR DURING READ

DATA RECORD NOT FOUND DURING READ
TRIED TO READ LOCKED/DELETED RECORD
TRIED TO READ SYSTEM RECORD
DEVICE NOT AVAILABLE

UNDEFINED ERROR CODE

SEEK ERROR DURING WRITE

LOST DATA DURING WRITE

PARITY ERROR DURING WRITE

DATA RECORD NOT FOUND DURING WRITE
WRITE FAULT ON DISK DRIVE

WRITE PROTECTED DISKETTE

DEVICE NOT AVAILABLE

DIRECTORY READ ERROCR

DIRECTORY WRITE ERROR

ILLEGAL FILE NAME

TRACK # TOO HIGH

ILLEGAL FUNCTION UNDER DOS-CALL
UNDEFINED ERROR CODE

UNDEFINED ERROR CODE

FILE NOT IN DIRECTORY

FILE ACCESS DENIED

DIREGTIORY SPACE FULL

DISKETTE SPACE FULL

END OF FILE ENCOUNTERED

PAST END OF FILE

DIRECTORY FULL., CAN'T EXTEND FILE
PROGRAM NOT FOUND

ILLEGAL OR MISSING DRIVE #

- NO DEVICE SPACE AVAILABLE

LOAD FILE FORMAT ERROR

MEMORY FAULT

TRIED TO LOAD READ ONLY MEMORY

ILLEGAL ACCESS TRIED TO PROTECTED FILE
FILE NOT OPEN

ILLEGAYL INITIALIZATION DATA ON SYSTEM DISKETTE
ILLEGAL DISKETTE TRACK COUNT

ILLEGAL LOGICAL FILE #

ILLEGAL DOS FUNCTION

ILLEGAL FUNCTION UNDER CHAINING

BAD DIRECTORY DATA

9-1

,The

ERROR CODES

45 2D BAD FCB DATA

‘46 2E SYSTEM PROGRAM NOT FOUND

47 2F BAD PARAMETER(S)

48 3p BAD FILESPEC

49 31 WRONG DISKETTE RECORD TYPE

59 32 BOOT READ ERROR

51 33 DOS FATAL ERROR

52 - 34 ILLEGAL XEYWORD OR SEPARATOR OR TERMINATOR
53 35 FILE ALREADY EXISTS

54 36 COMMAND TOO LONG

55 37 DISKETTE ACCESS DENIED

56 38 ILLEGAL MINI DOS FUNCTION

57 39 OPERATOR/PROGRAM/PARAMETER REQUIRE FUNCTION TERMINATION
58 3A DATA COMPARE MISMATCH

59 3B INSUFFICIENT MEMORY

6¢ 3C INCOMPATIBLE DRIVES OR DISKETTES

61 3D ASE=N ATTRIBUTE. CAN'T EXTEND FILE

62 3E CAN'T EXTEND FILE VIA READ

1f the error code is not defined, UNKNOWN ERROR CODE message will be dis-—
played. '

SYS4/SYS is the DOS error message display module.

9.2. DISK BASIC Error Codes and Messages.

In addition to the standard ROM BASIC LEVEL II error codes, the following DISK
BASIC error codes are used:

51 FIELD OVERFLOW 68 TOO MANY FILES

52 INTERNAL ERROR 69 DISK WRITE PROTECTED

53 BAD FILE # 79 FILE ACCESS DENIED

54 FILE NOT FOUND 71 SEQ # OVERFLOW

55 BAD FILE MODE 72 RECORD OVERFLOW

56 FILE ALREADY OPEN 73 ILLEGAL TO EXTEND FILE

58 DOS ERROR 75 PREVIOUSLY DISPLAYED ERROR
59 FILE ALREADY EXISTS 76 CAN'T PROCESS LINE §

62 DISK FULL 77 BAD FILE TYPE

63 INPUT PAST END 78 IGEL SYTAX ERROR

64 BAD RECORD # 79 IGEL ITEM SYTAX ERROR

65 BAD FILE NAME 89 BAD/ILLEGAL/MISSING IGEL ITEM PREFIX
66 MODE MISMATCH 82 BAD RECORD LENGTH

67 DIRECT STATEMENT IN FILE 83 STMT USES 2 FILE NAMES

84 BAD FILE POSITIONING PARAM
SYS13/SYS is the module that displays DISK BASIC and ROM BASIC error messages.

It is normally not in memory until needed. If an error code is generated for
which there is no message, UNPRINTABLE ERROR is displayed.

ERRO

<]

CODES 9-2

8. GLOSSARY.

. This chapter contains the definitions of some of the terms used throughout thec
NEWDOS/ 89 documentation.

alpaha or alpha character
Used when referring to the set of characters A - Z and a - z.

alphanumeric
Used when referring to the set of characters A - 2, a - z and § - 9.

bit

The smallest accessible unit of main or diskette memory. A bit has a

value of either § (meaning off) or 1 (meaning on). A group of & comsecu-
tive bits is known as a hexadecimal (or hex) digit, and a group of 8 con-
secutive bits is known as a byte. Whenever the documentation refers to a
bit within a byte, the convention is bit 7 is the bit on the left and bit
is the bit on the right with the order of bits within a byte going left
to right, 7 to §. The concept holds for bits within a hex digit, left to

right, 3 to f.
boot see reset/power-on.

ROOT/SYS :
One of the two control files required on every diskette used with

. NEWD0OS/88. See section 5.1.

buffer ’
An area of main memory used to hold the contents of a sector read from

disk or to hold the new contents of a sector being written to disk. Each
open FCB has a 256 byte buffer assigned for this purpose. Byte mode disk
1/0, such as is used for print/input, marked item, fixed item, and (if re-
cord length less than 256) field item files actually operates to and from

. the buffer with disk sector reads and writes being done when necessary,
and not on each GET or PUT or PRINT or INPUT statement execution.

byte
The smallest addressable unit of main or diskette memory. A byte is com-
posed of 8 bits. When the value of a byte is given, it is usually ex-
pressed as two hexadecimal digits. In NEWDOS/8f documentation the words
byte and character are used interchangeably even though character can have
a more restrictive meaning.

chaining

Used in NEWDOS/Sﬂ to refer to the process of bringing keyboard input
characters from a disk file known as a chain file. See section 4.3.

character

Used lnterchangeably with byte, but also used to refer to a byte contain-
. : ing a printable value.

19-1 GLOSSARY

close .
In disk I/0, to close a FCB or a filearea means to dissolve the link be-
tween a program and a disk file created by the open function.

DEC Directory Entry Code
. A one byte code used to specify a particular FDE and used by DOS to
quickly locate that FDE in the directory. When an FCB is open, its 8th

byte contains the DEC for the file's FPDE. Fach FXDE contains in its 2nd
byte the DEC for the preceding FDE for the same file, and each FPDE or
FXDE whose 31lst byte = 255 (@FEH) contains in its 32nd byte the DEC of the
next FXDE for the the file. The format of the 8 bit DEC is:

ITI588SS _ ‘ ;
where sgsss+2 = the relative number within the directory of the sector
containing the FDE, and rrr times 32 (2fH) equals the relative byte
address within the sector of the FDE. :

DIR/SYS _ see sections 5.1 and 5.6.
One of the two control files required on every diskette used with
NEWDOS/8#. DIR/SYS contains the directory for a diskette.

directory see sections 5.1 and 5.6.
In DOS, the directory refers to the contents of the file DIR/SYS that must
be present on every diskette used by NEWDOS/8f. The directory contains
the control information specifying all files and the free or allocated
state of all space on the diskette. If the directory is damaged or des-
troyed, the rest of the informaticn on the diskette is usually, but not
always, no longer available to the user.

DOS Disk Operating System
Though many thousands of programmers are quite capable of writing their
- programs to communicate directly with the diskette, it is almost always

preferable to allow another program, or collection of programs, to act as
an intermediary between the user program and the disk files the progranm
uses. This intermediary-is commonly called a DOS and serves to both
structure and vastly simplify a program's I/0 with the files it uses.
Usually, as in NEWDOS and TRSDOS, the DOS functions are much more exten-
sive such that the DOS becomes the primary control program in the computer
and has available various other functions, other than disk I/0 control,
that it performs in response to commands, known as DOS commands (specified
in chapter 2), or DOS calls (specified in chapter 3). In NEWDOS/8@, the
DOS operates in the 4@@P ~ S51FFH region of main memory with some of its
functions using the 529§ - 6FFFH region and the spooler running out of
highest memory.

DOS~CALL or dos—call
Refers to the DOS state entered when a user program calls the DOS routine
at 4419H (see sections 3.11 and 4.4) to execute a DOS command or a user
program. There can be multi-levels of DOS-CALL state.

DOS command or doscmd
Refers to one of the built-in DOS functions described in chapter 2. DOS
commands can be executed by keying in from the keyboard or through calls
from the current executing program (see DOS-CALL).

GLOSSARY 19-2

EGY End 0! File
Ol ¢r pertaining to the end ¢f & f1lce. Some files have one or TOre Spec-
ific EOF bytes that mark the end of a file (assembler source files usc
lAl, BASIC non-ASCI1 text uses 3 consecutive bytes of zerces, etc.); how-
ever, most files do not and rely entirely upon the EOF within the FCB or
FPDE to indicate where the file ends. If a file is empty, EOF equals @
and if a file has 1324 bytes, the EOF value expressed as an RBA is 1324.
Within a NEWDOS FCB, EOF is a three byte RBA value of the file's last byte
+l. The EOF value stored in a file's FPDE is not in RBA format. See
sections 5.7 (fpde bytes 4, 21 and 22) and 5.9 (FCB 9, 13 and 14).

FOL End Of Line
0f or pertaining to the end of a line. For 1input data or a command, this
is usually the ENTER character (§DH). For BASIC text, a zero byte ends a
line. If the line does not have an explicit EOL character{ then EOL wmeans
the line's last character + 1.

FOM :
Of or pertaining to the end of a message. The EOM character code is §3.
EOM is used to end a message when that message end is not also the end of
the line. When encountered, the EOM character is not displayed or printed
nor is the display or printer advanced one character.

EOR End Of Record
Of or pertaining to the end of a record. EOR is also the relarive byte
address within the file of the record's last byte + 1.

FOS End Of Statement
Of or pertaining to the end of a statement. For BASIC text, a colon ends

. a statement. :

extent element ‘
A two byte control element within a FPDE or FXDE specifying a 1 to 32

granule contiguous area of diskette storage assigned to the file. See
section 5.7, FPDE 23rd-3fth bytes.

fan . file area number
A fan is a BASIC expression evaluating to an integer (range 1 - 15) spec—
ifying which filearea is to be used for the current BASIC function.

FCB - File Control Block.
See section 5.9. A data area containing information controlling an 1/0
link between a program and a diskette file. The link is created by the
open function, dissolved by the close function, and used by all other disk
I/0 functions including GET, PUT, PRINT, INPUT, LOC, etc. The FCB con-
tains the NEXT and EOF fields, the buffer address, security information,

record lengﬁh, etc.
FDE .= File Directory Entry. See section 5.6.3.
In NEWDOS, each -sector of the directory file DIR/SYS, except for the first

two, is divided into eight 32 byte control areas called FDEs. A FDE is
either free (available for assignment) or in use as a FPDE or FXDE.

F file
. A BASIC fixed item file segmented into records all of the same length.

19-3 GLOSSARY

FI‘file

file

A BASIC fixed item file that is not record segmented.

or disk file or diskette file
A collection of data on a disk or diskette. A file may contain diskette
control information (as do BOOT/SYS and DIR/SYS), a machine language exe-
cuteable program (as do SYS#/SYS, BASIC/CMD and SUPERZAP/CMD), a BASIC
program (as does CHAINTST/BAS) or user data (such as mailing lists, pay-
roll, inventory). Control data for all files is contained within the file
DIR/SYS (see section 5.6) with each file being assigned one FPDE and zero
or more FXDEs. A file must exist entirely on one diskette. Diskette
space is allocated to a file as needed in units called granules.

filearea

An area of BASIC's system storage containing control information, a FCB
and a 256 byte buffer. A filearea is used during disk file operations to
maintain an I/0 link between a file and the BASIC program. This I/0 link
is established by OPEN, used by PRINT, INPUT, GET, PUT, FIELD, EOF, LOF,
LOC, etc., and dissolved by CLOSE. When 2 or more fileareas are open to
the same file, each acts in ignorance of the others. A BASIC program may
have open at any one time as many as 15 fileareas. The number of file-
areas actually available to the BASIC program is specified when BASIC is
activated (see section 7.2) with the default being 3.

field item file

file

This is a name used in NEWD0S/ 8§ for what, in TRSDOS disk BASIC, is called
a random file since all three types of files, field item, fixed item and
marked item can be used either randomly or sequentially or both. Field
item and fixed item files are essentially the same type of file; the main
difference is in the type of I/0 1link, field item or fixed item, used.

For field item files, the definition of the file items is done solely via
the FIELD statement. Field item files are always segmented into records
all of the same length, with that length being from 1 to 256 bytes.

item ,
A unit of file storage zero or more bytes in length containing a numeric
value or a character string.

filespec

This term is used in NEWDOS/8f to refer to the combination of file name,
name extension, pas$sword and drive number used to specify a file in a DOS
command, BASIC statement or an unopen FCB. Of the four elements, only
file name is required. See section 2.1 for full definition of filespec.

fixed item file See section 8.4.

Fixed item and field item files are essentially the same type of file.

The difference lies in the type of link, field item or fixed item, used in
the file I/0. For fixed item file processing, the definition of the file
items is entirely dependent upon the IGEL used in the GET or PUT state-
ment. There are.two types of fixed item files, FI and FF.

format

Aside from many other definitions of the word format, it is also the word
used for the process that prepares a raw diskette for use under NEWDOS/&4.
This process magnetically structures the diskettes into tracks which are
at the same time further sub-divided into 256 bytes sectors. Depending on

LOSSARY 186-4

FPDE

FXDE .
'See section 5.8 for FXDE specification. Whenever the number of extent

o

the drive type, the dishetie will contailn 35, 4, 77 or €9 tracks, and
depending upon the drive type and recording density, each track will con-
tain 1§, 17, 18 or 26 sectors.

file positioning
See section 8.4.1. fp refers to the second parameter of a GET or PUT
stateme- z. fp specifies the file positioning to be done during the file
positic .ng phase that precedes the data transfer phase, if any, of a GET

or PUT _atement.

File Primary Directory Entry
See section 5.7 for FPDE specification. A FPDE is created in the diskette
directory whenever a file is created. If a file exists on a diskette,
there will always be a FPDE for it in the directory. The FPDE contains
the file name, extension, passwords, protection level, EOF, the first 4
extent elements and other information. When a file is killed, the FPDE
and any associated FXDEs are dissolved. -

File Extended Directbry Entry

elements needed to account for a file's diskette space exceeds four, one
or more FXDEs are created in the directory to hold the extra extent ele-
ments, a maximum of four per FXDE. Tf a file has FXDEs, they are accessed
via the FPDE. As a file's diskette space requirements change, FXDEs are
created or dissolved as necessary, and when a file is killed, all FXDEs
associated with that file are dissolved.

Granule Allocation Table
See section 5.6.1. The GAT is that portion of the directory's lst sector
(known as the GAT sector) wherein the free or allocated status of each
granule is accounted for.

granule’

hash

The smallest unit of diskette storage allocatable to or de—allocatable
from a file. When a file needs diskette space, one or more granules is
allocated. For NEWDOS/8§ a granule consists of 5 sectors equaling 128§

bytes.

code _
Hash code as used in the DOS refers to a one byte encode of a file's name

and extension used during open to rapidly find the file's FPDE in the
directory. Hash codes are stored in the HIT sector, see section 5.6.2.

hexadecimal or hex

A numbering system using 16 digits, rather than 1§ used by the decimal
system. The digits are $, 1, 2,3, 4, 5,6, 7, 8, 9, A, B, C, D, E and
F. The reason for the use of hexadecimal as opposed to decimal is that a
hexadecimal digit is an easy way to express .the value of 4 consecutive
bits, where the following table defines the correspondence between a hex-—
adecimal digit and four -binary bits.

g 0Ppp 4 Pi1pp 8 1PPp C 1199
1 ¢9p1 5 9191 9 1941 D 1191
2 ¢p1p 6 Pllp A 1919 E 1119
3 gp11 7 $111 B 1pll F 1111

16-5 GLOSSARY

RIMEM

HIT

I/0°

Hexadecimal representation of disk, file or main memory locatioms and
contents are widely used in the computer industry. Though some users can
get by without learning anything of hexadecimal, we strongly recommend
that users learn the rudiments, at least enough to understand the SUPERZAP
and DEBUG displays. Throughout NEWD0S/8@ and its documentation a hexa-
decimal numeric value is expressed with a suffixed H character (i.e., 13 =
@#DH or 256 = 1PPH) unless otherwise specified.

Refers (1) to the address of the highest usable main memory locatiom, (2)
to the 2 byte main memory area (Model I locations 4P49H - 4P4AH and Model
III locations 4411H - 4412H) where the HIMEM value is stored and (3) to
the name of a DOS command (see sectiom 2.25). Main memory above HIMEM is
either non-existent or is reserved for other uses. All user Z-8f code
programs should be coded to observe HIMEM.

Hash code Index Table
See section 5.6.2. That portion of the directory's second sector (also
known as the HIT sector) that contains the hash codes for all files om the
diskette. Instead of searching the entire directory for a file's FPDE
during open, DOS computes the hash code from the file name and extension,
looks it up in the HIT sector and then goes directly to the sector con-
taining the FPDE.

input and/or output

I/0 link or I/0 path

Actual disk I/O between a disk file and main memory is done via an 1/0
link (also known as an I/0 path) created by open, dissolved by close, and
used by GET, PUT, PRINT, INPUT, LOC, EOF, etc. While the link is open,
the controlling information for the link is contained in a FCB or filearea
(which contains a FCB). Multiple links to the same file can be open at
the same time with each link knowing nothing of the others. An I/0 link
remembers the position in the file where it is operating; thus multiple
links can be operating on the same file at the same time. However, be
careful as, remember, each I/0 link knows nothing of the other's actions.

IGEL Item Group Expression List
See section 8.4.2. An IGEL is a list of BASIC expressions corresponding
to a group of file items during the execution of a GET or PUT statement
used in fixed item or marked item file processing.

IGEL expression See section 8.2.3.
An IGEL expression (usually but not always a BASIC variable) is that part
of an IGEL corresponding to a file item. For each file item processed in
a fixed item or marked item file GET or PUT statement, there is a corres-—
ponding IGEL expression in the IGEL.

IGELSN IGEL Sequence Number

The line number (also known as sequence number) of the BASIC text line
containing the first or only line of the IGEL to be processed by the cur-
rent GET or PUT statement. If used, the IGELSN is the 3rd parameter of
the GET or PUT statement. An IGELSN is used in a fixed item or marked
item GET or PUT statement whenever the GET or PUT statement itself dces.
not contain the IGEL, and this usually occurs when the same IGEL 1s used
by two or more GET and/or PUT statements.

GLOSSARY 19-6

item group
A group of zerou or mwore file items. In BASIC, an 1io: STou iy the wero
or more file items processed by an individual InDUT, PRIKT, GET or PUT
statenent and 1s most commonly equivalent to a logical record.

len - See section 8.7.7 and see LRECL
The parameter in a BASIC OPEN statcment that specifies cither the standard
or the maximum record length.

logical record
A group of meaningful related file items. Though file data is physically
ordered on the diskettes into sectors, the programmer usually deals with
data groupings that are logically related and grouped, rather than physi-
cally related and grouped. Thus, when data is read from or written to a
file, it is usually done so in logical record units.

LRECL Logical RECord Length
This is the standard or maximum length in bytes for records of a file.
For non-BASIC files LRECL is @ - 255 (with § meaning 256) and is stored in
the FPDE's 4th byte (though never used) and the FCB's l@th byte. In
BASIC, LRECL is equivalent to len (see section 8.7.7).

iump :
refers to a division of diskette space as that space is accounted for in
the diskette directory. Fach of the first 192 bytes in the GAT sector
contains either space allocation or lockout information for one lump
vhere, depending on the number of granules per lump, each bit within the
byte is either unused or specifies the allocated/free or non-existent/
existent state of one of the lump's granules. This definition was coined
for use with NEWDOS/8@ Version 2 to avoid using the words track and cyl-
inder. See sections 5.6.1 and 5.7 (23-3@th byte discussion).

marked item file see section 8.6. :
A file in which each file item is identified as to length and type by a
prefixed marker byte. A marked item file is distinctly different from a
print/input, field item or fixed item file. The three types of marked
item file are MI, MU and MF.

MF file i

A marked item file that is segmented into records all of the same length.
MI file

A marked item file that is not record segmented.
msAf~‘ millisecond

MU file o _ ,
: A marked item file that is segmented into records of differing lengths.

null)
The absence of a parameter or expression. When parameters are separated

by commas, back to back commas (,,) indicate a null.

19-7 : GLOSSARY

: null character

A character or byte with value = g.

null string
A string or an expression evaluating to a string zero characters in

9

length.

open _
In disk I/0, to open a FCB or a filearea is to establish a link between
the program and a disk file, using the FCB or filearea (which contains a
FCB) to hold the link's control data. Though it is quite common to say
that a file is opened, it is more correct to say that a FCB or filearea 1is
opened for there is nothing in the disk file indicating open or closed
state or the number of links opened to it as more than one FCB or filearea
may be open to a given file at the same time. The link established by
open remains until dissolved by the close function. It is the link that
determines the type of I/0 done with a file and where in the file. Thus,
if differently specified links are established to the same file to exist
concurrently, the same file data can be used but interpreted differently
by each of the different links.

partial record I/0
"Refers to instances where I/0 is done in partial rather than full logical
records. In BASIC, GETs and PUTs for marked-item and fixed—item files may
operate in this manner though they usually operate in whole record 1/0

mode.
patch see zap.

power—on/reset See reset/power-on

print/input file
A disk file written to by PRINT statements and read by INPUT statements.

record segmented flle
A type of file that can be broken down into logical records by BASIC.
These file types are field item, FF , MF and MU.

REMBA REMembered Byte Address See section 8.19.
REMRA REMembered Record Address See section 8.1§4.
RBA i Relative Byte Address

A method of addressing within a file, record, control block, etc. where
addressing starts at § rather than 1. The first byte of the unit has RBA
= §. The nth byte in the unit has RBA value = n-l. In NEWDOS, RBA is
used to express EOF and NEXT in the FCB; this use of RBAs in the FCB 1is
major difference between NEWDOS and the old versions of TRSDOS. 1In BASIC,
RBA is used in file positioning (see section 8.4.1) where, in fp = Irba,
!$rba or !#rba, rba is defined to be a BASIC expression evaluating to a
number between § and 16,777,215 and represents a relative byte position
from the beginning of the file.

reset/power-on - also known as boot.
refers to the automatic computer execution that occcurs whenever the com-
puter's reset button is pressed or when the computer 1is powered up. In

GLOSSARY 19-8

reality, vou musl never have diskettos in ary drives whern vou power up the
computer. After the power up, put the systen diskette in drive § and
press reset. For the most part, NEWDOS/SP treats u reset after power-on
the same as a reset at any other time. There are sonme differences, how-

ever, with the most notably being the date and time settings that occur.

During a reset/power-on, the ROM's bootstrap routine routine receives
computer control from the hardware reset logic and reads the first sector
of the diskette mounted in drive § into the DOS system buffer (42ppH -
42FFH on the wodel I and 43PPH - 43FFH on the model III1). That 256 bytes
contain's NEWDOS's bootstrap routine which receives computer control from
the ROM and then reads into main memory a fresh copy of NEWDOS/8f's main
wemory resident module SYS$/SYS. Execution control is then passed to
SYS@'s initialization routines in the DOS overlay area. Using the current
SYSTEM and PDRIVE specifications, NEWDOS/8¢ is initialized. When this is
completed, either NEWDOS/8@ READY is displayed or DOS commences the exe-
cution of the AUTO (see section section 2.4) specified DOS command.

sector

SOR

track

user

vice

For NEWDOS/8f, diskette data storage is physically done in groups of 256
bytes called sectors. Actual diskette reads and writes are done by whole

sectors, usually a single sector at one time.

Start Of Record
0f or pertaining to the start of a record. All records of a MU file start

with a SOR item, a 7fH byte.

The unit of diskette storage a disk drive read/write head passes over
during one revolution of the diskette. A diskette is divided magnetically
into a number of concentric tracks during format (35 is standard on the
model I, 4f on the model I1I). Format also divides each track magneti-
cally into 256 byte sectors which will subsequentely contain data of any
and all kinds.

segmented file

A type of file which cannot be broken down into logical records by BASIC.
These file types are FI and MI. If these file types are to be segmented
into records, it is done so solely by the programmer without BASIC's

_knowledge.

Means 'instead of' or 'in place of'.

whole record I/0

zap

"Whole record I/0 is when an entire logical record is read or written dur—

ing the execution of a single INPUT, PRINT, GET and PUT statement. This
is the normal procedure for those statements. See partial record I1/0.

To alter data or program executable code without recompilation. See
section 11.

19-9 GLOSSARY

11. ERROR REPORTIHG, INCOMPATIBILITY HANDLING, AND PATCHING.

. 11.1. As with previous NEWDOS versions, NEWDOS/89 Version 2 will contain

eI'TOrs not presently known, will receive minor enhancements as the months pass,
and has incompatibilites with other DOSs including earlier versions of MNEWDOS.
Where possible and economically feasibie, patches (zaps) will be issued to
correct the errors, provide the enhancements and, in selected cases, relieve
the incompatibilities. :

Apparat relies heavily on the NEWDOS/8¢ users to find and inform Apparat of
NEWDOS errors and incompatibilities. Over half of the zaps generated for
NEWDOS/8f Version 1 were a direct result of an error properly reported. In
some cases, the user had to report the error more than once before Apparat
either paid attention or finally found the error. Reported errors may or may
not be fixed, depending upon the seriousness, the magnitude and the amount of
zap area available in the affected modules. If an error is not to be fixed,
Apparat will, in a commment zap, report the error and announce that it will not

be fixed.

11.2, Incompatibility Handling.

NEWDOS/84 is a different DOS from TRSDOS, VTOS, LDOS, DOSPLUS and others;
therefore many user programs will not operate on NEWDOS/8f without some modi-

fication. For any particular program, the best thing is to try that progranm
. out with NEWDOS/8@; be sure you do not use valued file data in these tests. In
the past, Apparat has tried to Create and distribute the necessary patches to
commonly used, commercially sold programs, but this proved unworkable for a
number of reasons. '

1. Apparat was not notified by program manufacturers of a pending release
of a new program and of its actual incompatibility with NEWDOS/8f. The
discovery of the incompatibility always came from the users. This is not
a criticism, only a statement of fact.

2. Apparat did not and does not have the personnel resources to research
each incompatibility problem and to generate the necessary zaps to the
non-NEWDOS/ 8¢ programs.

3. The mailing of zaps to all registered NEWDOS/8f owners was delayed
until a number of zaps were available, a delay usually of months, though
Apparat would mail out the latest zaps to individuals on request. It
would be much better if the necessary incompatibility zaps were sent out
along with the non—-NEWDOS/88 program. Apparat, in the past, did not make
an effort to send the zaps to the manufacturers to include with their
programs, and for this we apologize. :

For NEWDOS/8¢ Version 2, Apparat will still issue compatibility zaps for some

application programs, but fundamentally Apparat will rely on the creator and/or
. distributors of non—-NEWDOS/8) programs to pProduce and distribute the zaps nec-

essary, if any, to run those pPrograms with NEWDOS/8J. To assist in this ef-

11-1 ERRORS, PATCHING

fort, Apparat offers a free copy of HEWDOS/8§ to business firms that produce
software products to be used on NEWDOS/8P, provided these products are adver-
tised in a major publication (NEWDOS/8f need not be mentioned in the adver-
tisenent).

11.3. Reporting of NEWDOS/8) Errors and Incompatibilities.

To reduce confusion, frustration, cost and wasted time, Apparat requiresvthat
the following be done:

1. Read and understand the applicable documentation.

2. For errors, assure that language programs using NEWDOS/8f are inter-
facing correctly. Apparat does not check out programs other than what it

creates.

3. Assure that all outstanding mandatory zaps have been applied to your
NEWDOS/8¢ system or user programs.

4., Run the circumstances resulting in the NEWDOS/8P error or incom-—
patibility many times under varying conditions (if possible).

5: Precisely and concisely write up the error circumstances and send,
along with applicable diskettes, to:

Apparat, Inc.
4491 S. Tamarac Parkway
Denver, CO 80237

7. Include your NEWDOS/8f registration number.

8. Tnclude copies of the diskettes (as gifts to Apparat) containing the
'all the modules involved in the error or incompatibility. Apparat will
destroy the diskettes' contents, including any copies made of them, when
done with the error study.

9. DO NOT PHONE Apparat directly. Phone answering personnel are not
technically knowledgeable of MEWDOS.

1. DO NOT INCLUDE product orders or other requests with your error
report.

11.4. Format of NEWDOS/8J Zaps.

In NEWDOS/8¢, zaps (patches) are manually applied by using the program SUPERZAP
discussed in section 6.1. The user should study section 6.1 to learn how to
use SUPERZAP, but if he/she prefers not to do that, enough information will be
provided in this chapter to scrape by.

Though SUPERZAP is a somewhat cumberso: » method of applying zaps, this method

ERRORS, PATCHING 11-2

does have the advantage of forcing the users to learn how to use SUPERZAP and
gives them confidence in using that program they would otherwise not have ac-
. quired. Sooner or later, everybody needs to use SUPERZAP to help repair dam-

aged disk files, and when this emergency arises, the more experience the user
has had with SUPERZAP, the better.

NEWDOS/8@ zaps are consecutively numbered and are dated with the date the zap
was made available. A zap will be either mandatory or optional, and it is
cither for a NEWDOS/8f module (i.e., one of the files on the NEWDOS/ 8P master
system diskette) or for a non-NEWDOS/8f module. Tf it is mandatory zap to a
NFWDOS/8p module, and your NEWDUS/8f system diskette is dated later than the
zap, the zap will usually, but not always, already have been applied to your
diskette.

Each zap will have a short explanation of the reason for it. Next will follow
one or more zap areas, with each area composed of three parts:

1. The location on the diskette of the first byte of the area. This
location will consist of 3 parameters and will be in the following format.

filespecl,relsector,relbyte
where
1. filespecl gives the name or name/ext of the file to be zapped.

2. relsector is the relative sector within the file. relsector is
. ' in decimal.

3. relbyte is the relative location within the sector of the zap
area's lst byte. relbyte will be in hexidecimal but will not be
suffixed with the character H.

Exampleé:

DIR/SYS,2,2¢
EDTASM/CMD, 26 ,F6
YOURFILE, §, 88 S

2. The old contents of the zap area. Each byte will be printed as two
‘hexadecimal digits, and for readibility the bytes will be separated by at
least one space. If a hex digit position contains a - » then either
Apparat doesn’t care or doesn't know what exists in that hex digit before
it is zapped.

3. The new contents to” be zapped into the area, printed in the same
format as for the old contents.

If a zap area covers more than 24 bytes, the format is changed so that both the
before and after areas will be aligned to appear as the user will see them on
the SUPERZAP display. This makes for easier viewing and zapping.

.Many zaps really do not change the first and/or last bytes of the zap area.

These bytes were included to help the user synchronize on the proper area, both
before and after the zap, and to provide more verification bytes. However, it

11-3 ERRCORS. PATCOHTNA

1s not mandatory that the first and last bytes of the zap area be used this

way,
area

and they usually won't be if the current zap area ajoins or overflows the
of another zap or if the zap area starts, ends, or overflows a sector

boundary.

11.5.

Zapping Procedure. To apply a zap, perform the following steps:

1. Make at least one backup copy of the diskette to be changed. NEVER,
NEVER, NEVER, NEVER apply a zap without first making a backup copy!!!

2. Execute DOS command SUPERZAP.
3. Mount the diskette containing the file to be zapped.
4. Enter the SUPERZAP function code DFS.

5. Enter the file's filespec, containing (1) the name or name/ext from
the zap area location's lst parameter (see section 11.4.1.1.) (if the file
has been renamed, then use the applicable name/ext), (2) the access
password, if required, and (3) the drive number.

6. Enter the zap area location's 2nd parameter (see section 11.4.1.2) as
the relative sector number within the file.

7. The sector will be displayed to the user (see step 14 below). Find
the zap area in the display, and verify that the old contents are as they
should be. -If they are not, then check if the zap you are about to apply
is already applied; it may well be. If it is, then skip the current zap
area and go on to the next. If it isn't, then check Apparat.

8. When satisfied with the old contents, type MODxx without ENTER. xx is
the zap area location's 3rd parameter (see section 11.4.1.3.).

9. The cursor should appear over the first hex digit of relative byte xx.

If the cursor does not appear, type in MODxx again. If the cursor appears
over the wrong digit, check to make sure you are where you think you are.
CAUTION!!l When the cursor appears, SUPERZAP is in modify (overwrite)
mode; be careful what keys you press. In modify mode, left, right, up and
down arrows and the space bar may be used to move the cursor.

1#. To alter the hex digit in the cursor position, press the proper § - 9
or A - F key that represents the replacement value. The cursor will
automatically advance to the next hex digit.

11. Type in all the new hex digit values.

12. If not satisfied with the changes, press Q to cancel the modification
and return to the display.

13. When satisfied with the changes and ready to update them to the disk-
ette, press ENTER. Then press Y, and when instructed, press ENTER again.
SUPERZAP will exit modify mode back rto display mode.

FRRORS, PATCHIKG 11-4

Pao When an sector display mode (o cursor):

I. Press K 1if you wish Lo display another sector of the sawe §ile.
Go to step b.

L

2. Press J if you wish to go on Lo another file. Go to step 5.
3. Press X if you wish to return to the function menu.

4. Go to step 7 if there is another zap area for this same sector.

11.6. REWDOS/8§ Zap Distribution.

Apparat requires registration of all NEWDOS/8@ owners and will limit distribu-
tion of its zaps to registered owners. Please notice that, unlike other reg-
istration forms, the NEWDOS/8p registration card does not require the NEWDOS/ 8§
owner to agree to anything; just let us know who you are!

Apparat'does not guarantee that zaps will be distributed, as such distribution
1s a cost to Apparat over and above what the purchaser paid for MEWDOS/89¢.
Apparat reserves the right to institute a charge for the zaps at some future
tinﬂe.

Zaps will be distributed by mail. Zaps will NOT be given over the phone.
Distribution of zaps to all registered owners will occur whenever a large num—
ber of zaps has been accumulated. However, upon request, the latest zaps will
be sent to individual registered owners, but please, if you are not having any
trouble with your NEWDOS/8@, don't ask.

When Apparat receives a registration card, the latest copy of the zaps will
soon thereafter be mailed to the registered owner. This lets the owner know
that Apparat has received the registration card and provides the owner with any
zaps generated since either that manual (containing zaps as chapter 13) was
nade up or that MEWDOS/8# diskette was created.

11.7. 1Initial Installation of Zaps.

When you first receive your NEWDOS/8§, chapter 13 will contain the zaps out-
standing at the time your manual was made up. Some of the pages for that
chapter may have been inserted in the front of the manual at the|last minute;
find them and put them in chapter 13. f i

Next, make soue backups of the’HEWDOS/Sﬁ master diskette.
Now, since your NEWDOS/8¢ manual may or may not have béen nmade up at the same
time as your NEWDOS/8@ diskette, you must synchronize the diskette with the

zaps, if any, in chapter 13. Most of the mandatory zaps to NEWDOS/8¢ modules
will already have been installed, but you must still check.

11-5 ERRORS, PATCHING

Using SUPERZAP, test if the highest numbered mandatory zap for a NEWDOS/S8¢
module has already been installed. Tf it has, then you may assume all lower
numbered mandatory zaps for NEWDOS/8f modules have been installed. This is not
the case for optional zaps to NEWDOS/8P and any zaps to non-NEWDOS/8p programs.
If this highest numbered mandatory NEWDOS/8f module zap has not been applied,
then check the next lower numbered such zap until you reach one that has been
installed. Then, from but not including that zap, start applying the higher
numbered mandatory NEWDOS/8@-module zaps in ascending numeric order. Higher
numbered zaps may well zap over an area covered by a lower numbered zap.

Apparat has received many complalnts from users who did not realrze that some
or all of these mandatory zaps were already applied to their diskette. As a
general rule, but you must still check, a mandatory NEWDOS/ 8¢ module zap is

installed. on your dlskette if your dlskette is dated 1ater than the zap.

As we’l as applylng the mandatory NEWDOS/8¢ module zaps, you must apply the
mandatorylzaps, ‘if any,” to those non~NEWDOS/8@ modules you are going to use
with NEWDOS/8@. ' You' should also at least read the optlonal zaps s0' you know

'E*they‘eXLSt. RS S .
.o : PRI e g Woae

-,

, Flnally, though you will probably never know it, it is possxble that your '

‘NEWDOS/SQ ‘diskeétte will have:’ ‘some mandatory zaps installed not yet listed in
your-. chapter 137~ This is not. common, but such a. thing has occurred. The zap
sheets' you receive ‘in response to sending in your NEWDOS/8f registration card
should cover those unknown but nevertheless already installed zaps. '

:11.8.f.Subsequent‘Installatidn.of Zaps.

When you receive a zap mailing from Apparat, you should apply the new mandatory
zaps to-NEWDOS/8# modules and to those non-NEWDOS/8§ modules you are using with
NEWDOS/8#- Once again,- you. should at least read through the new optional zaps.
. There is no.need to reread the zaps that you already have, as zaps are seldom
updated and if. they-are, usually a subsequent zap refers to the change.

Remember, your NEWDOS/8¢ master dlskette may already have some of the newer
mandatory NEWDOS/8f module zaps applied; so check the highest numbered new zap
and work your way down until you come to a zap that has been installed. Then
start installing higher numbered zaps in ascending zap number order.

Never apply a higher numbered mandatory NEWDOS/8@ module zap before applylng
all lower numhered mandatory NEWDOS/8f module zaps.

7

11.9. Diskette Update Service

In NEWDOS/8@ version 1, due to the large number of zaps, Apparat instituted a
NEWDDSO/ 8% original dlskette zap update service that is being continued for
Version 2. This service does not replace the zaps but is intended for those
users who would prefer Apparat to apply the zaps.

H

[$]

o

-
o
-
-
|
n

REORS, PAT

The user sends & package to Apparat containing his/her original NEWDOS
diskette, $19.P¢ for service and handling, and a note explaining that
zap update is wanted. Address the package to:

AN
7o
™3

[4e)

/
t

o

i

f

APPARAT, INC.

NEWDOS8¢ Diskette Update Service
44P1 S. Tamarac Parkway

Denver, Co 8p237

Do not include any other information or requests in this package. Include
in your note your phone number, your NEWDOS/8¢ registration number and the
return address to be used. .

Apparat will perform a full diskette COPY (without CBF option) from its
then master onto your diskette, such that all NEWDOS/ 8¢ module mandatory
zaps then outstanding will be included on your diskette. Your diskette
will then be returned via UPS if possible (we can trace UPS better than
the mail); otherwise the mail will be used. Please, if possible, provide
us with a street address.

The original diskette must still contain its original label with the
registration number, which will be checked against your registration card.

The diskette must also contain the NEWDOS/8f4 system. If the registration
number is missing or the diskette does not contain the system, the update
will be denied. The $1f.0#p service and handling charge applies each time
an original NEWDOS/8f diskette ig submitted and it must accompany the
diskette. Be certain all non-NEWDOS/ 8 modules that you wish to keep have
been taken off the diskette before sending it. If your original diskette
is unchanged, then you have nothing to take off.

This zap update service includes the mandatory zaps to NEWDOS/ 80 modules
only. It does not include optional zaps or zaps to non-NEWDOS/ 8% modules
(i.e., SCRIPSIT, EDIT, etc.). This service does NOT include an upgrade to
a new version of NEWDOS, if and when that occurs.

Do NOT send your diskette back to your dealer as dealers are not kept up
to date on the current zaps. Send your diskette only to Apparat.

11.1p. zap Duplication.

All users keep many copies of NEWDOS/8@, and single drive users are forced to
have a NEWDOS/8f system on every diskette they use with NEWDOS/8f. Once the
new zaps have been installed correctly om ome copy of NEWDOS/88 and these new
zaps have been checked out, the user is now faced with the task of either
zapping all the other diskettes or with copying the zapped files to those other
diskettes. Through use of format 6 COPY (CBF) with the ILF and DFO parameters
(the DFO parameters is defined below and not with COPY). 1Instead of specifying
this proceedure, the following example will be used instead.

Suppose that the modules SYs@/sys, 8YSs2/sys, SYS17/SYS, SYS14/sys,

BASIC/CMD, and DIRCHECK/CMD were changed by the latest zaps. The zaps
were applied to ome copy of NEWDOS/8@, and NEWDOS/8¢ was then checked out

11-7 ERRORS, PATCHING

to make sure the zaps were OK. For the rest of this exanple, this
diskette is referred to as the zapped diskette.

An ILF file (which is just like a chain file) is built containing the
following records.

SYS@/sys
S$YS2/sYS

. SYS17/sYs .
SYS12/SYS
BASIC/CMD
DIRCHECK/CMD

This file is named ZAPNAMES/ILF and is placed on the zapped diskette.

Next, a chain file is built containing one of the following two commands:

-COPY, 9,0, ,NFMT,DFO, CBF, ILF=ZAPNAMES/ ILF: § single drive systems
or
COPY,$,1,,NFMT,DFO, CBF, ILF=ZAPNAMES/ILF:§ two drive systems

This file is named ZAPDUP/JCL and is stored on the zapped disketted. Both
of these files can be built using CHAINBLD (see section 6.6) or SCRIPSIT.

The zapped diskette will be considered both the SYSTEM and the SOURCE

. diskette and will be mounted on_drive §. The NEWDOS/8¢ diskette to

receive the zapped modules will be considered the destination diskette,
and, in the case of two drive systems, it will be mounted on drive 1.

Then, for every NEWDOS/8@ diskette that is to receive the zapped modules,
execute the -DOS command: '

DO, ZAPDUP

This DO command will cause execution of the COPY command contained in file
ZAPDUP/JCL:@. Since the COPY command specifies an ILF file, only the
files listed in that ILF file will be copied. Further, since the DFO
option was specified, only those of the six files previously existing on
both the destination and source diskettes are copied. For example, if
DIRCHECK/CMD was not previously on the destination diskette, it is not
copied to it.

Single drive system users will have to do a lot of diskette mounting. It
is best to put a special marking on the zapped diskette to distinguish it
from all the others.

Two drive system users will have only two responses per diskette copy.
Since the DFO (Destination Files Only) option was not defined in COPY, it

is defined here to mean that only files already existing on the both the
destination and the source diskette are copied.

ERRORS, PATCHING 11-8

12. CONVEUSION INFOREATION ARD MISCELLAUECUS COBMELTS.

This chapter contains Version 1 to Version 2 conversion information, miscella-
neous information and changes to the information contained in other chapters as
those chapters were already sent to the printers before the changes could be
made.

12.1. RBAs gain in respectibility.

In late July, Apparat became aware that beginning with the Model III TRSDOS
Version 1.3, TRSDOS is using RBA (Relative Byte Addressing) as the format for
the EOF field in the directory FPDEs and for the EOF and NEXT fields in the
FCBs. Finally, after 28 months, one of the major incompatibilities between
NEWDOS and TRSDOS, that of the different handling of the FCB NEXT and EOF
fields, will be mostly, if not fully, eliminated.

See section 5.7 for discusion of the FPDE EOF field in the Ath, 21st and 22nd
bytes. See section 5.9 for discussion of the FCB EOF field in the 9th, 13th
and l4th bytes and the FCB NEXT field in the 6th, 1lth and 12th bytes.

See section 12.4 for NEWDOS/8f Version 2 incompatibility with Model I TRSDOS
Version 2.3.

See section 12.5 for NEWDOS/8fp Version 2 incompatibility with Model III TRSDOS
Version 1.3. -

TRSDOS's changing of the FPDE EOF field to RBA format is the correct move to
make, but it has the unfortunate problem of making Model III TRSDOS 1.1 and and
1.2 diskettes not directly readable on 1.3 and vice versa. Feeling that the
1.3 directory structure will become the Model III standard despite all com—
plaints, the functions of the NEWDOS/8# COPY command (see section 2.14) that
allow copying of files from and to Model III TRSDOS diskettes will work with
the Model III TRSDOS 1.3 diskettes only.

When RBAs were instituted in March, 1979 as the NEWDOS format for the FCB NEXT
and EOF fields, we also wanted to set the directory FPDE EOF fields to RBA
format. Doing so would have made all NEWDOS diskettes incompatible with all
existing TRSDOS diskettes and seriously reduced NEWDOS' useability. Since
there are very few programs that actually read or write the directory FPDE EOF
field and since the reason for changing to RBA formats is to eliminate confus-—
ing situations that could occur in FCB processing, Apparat decided to leave the
directory FPDE EOF field alome. The procedure for converting from the FPDE EOF
format used by NEWDOS and the old TRSDOSs to RBA format and vice versa is sim-
ple enough and doesn't cause confusion. The rules are:

To convert from the NEWDOS and old TRSDOS format to RBA format: if the
lower order byte of the 3 byte value is non—-zero, subtract 256 from the 3
byte value (or subtract 1 from the high order 2 byte value).

To convert from RBA format to the NEWDOS and old TRSDOS format: if the
lower order byte of the 3 byte RBA value is non-zero, add 256 to the 3

12-1 CONVERSION & COMMENTS

Byte RBA value (or add ! to the high order 2 byte value).

Even though at this time there are rumors of Model III compatible TRSDOS coming
out for the Model I that will use the RBA format in the directory FPDE EOF
field and even though Apparat agrees that that field should be in RBA format,
NEWDOS/89 for Version 2 will remain with the old format for that field.

12.2. Converting from Version 1 to Versionm 2 on the Model 1.

1. Most programs that worked on Model I NEWDOS/8p Version 1 will work on
the Model I NEWDOS/8f Version 2.

2. The BREAK key enable/disable can no longer be controlled via bit 4 of
4369H. User program may continue to toggle this bit, but DOS ignores 1it.
* See section 2.8. '

3. FCB changes (see section 5.9):

1. Use of bit 2 (indicating track and sector operations) of FCB's
lst"byte has been dropped.

2. New definitions have been created for bit 3 of the FCB's 2nd byte
and for bits 7 -5 of the FCB's 3rd byte.

.

3. FCB's 17th through 32nd bytes have been redefined.
4, Directory changes (see sections 5.6, 5.7 and 5.8):

1. The GAT sector now accounts for lumps instead of tracks. Each
byte within the P§f# - BF range in the GAT now corresponds to a lump
rather than a track, and granules per lump rather than granules per
track is now used. The first byte of each extent element within
FPDE's and FXDE's is now a lump number rather than a track number.
The 3rd byte of the diskette's first sector (the boot sector) is now
a lump number rather than a track number. Provided the proper GPL
value is specified in PDRIVE, all Version 1 directories and boot
sector 3rd bytes are directly usable on Version 2 and, with greater
care, vice versa.

2. Bits 7, 6 and 5 of the FPDE 2nd byte have been defined.

3. The granule allocation table can now optionally use the first 192
bytes of the GAT sector. If the diskette's lump count is greater
than 96 (6fH), the granule allocation has overflowed into and negated
the granule existence table (the lockout table).

5. DEBUG can no longer be enabled/disabled by the value in 4315H. User
programs can continue to set this location, but DOS ignores it.

6. DEBUG can no longer be entered by pressing the BREAK key; only the 123
keys are used (see section 4.1).

-

7. PDRIVE has been greatly altered. Study section 2.37 carefully. The

CONVERSION & COMMENTS 12-2

following PDRIVEs must be used to read and write existing Version 1 disu-

ettes on Version 2. These specifications must be used when making a
diskette that will be read on Version l.

1. PDRIVE,dnl,dn2,TI=A,TD=A,TC=35,SPT=1¢,TSR=3,GPL=2,DDSL=17,DDCA=2
is the specification for standard 5 inch, single density single sided
diskettes. For 4P, 77 or 8¢ track drives, set TC accordingly.

2. PDRIVE,dnl,an,TI=A,TD=C,TC=8@,SPT=2¢,TSR=3,GPL=4,DDSL=17,DDGA=2
Use this DPRIVE setting for 5 inch, single density, double sided
diskettes. For 35, 4@ or 77 tracks, set TC accordingly.

3. PDRIVE,dnl,an,TI=B,TD=B,TC=77,SPT=15,TSR=3,GPL=3,DDSL=17,DDGA=2
is the specification for 8 inch, single density, single sided
diskettes used with the OMIKRON interface. Version 2 can handle up
to SPT=17 for this type of diskette; you may want to covert your
existing diskettes to gain the extra 12 percent space.

4. PDRIVE,dnl,dn2,TI=B,TD=D,TC=77,SPT=3§,TSR=3,GPL=6,DDSL=17,DDGA=2
is the specification for 8 inch, double sided, single density
diskettes used with the OMIKRON interface. Version 2 can handle up
to SPT=34 for this type of diskette; you may want to convert your
existing diskettes to gain the extra 12 percent space.

5. PDRIVE,dnl,an,TI=CK,TD=E,TC=34,SPT=18,TSR=3,GPL=2,DDSL=17,DDGA=2
is the specification for 5 inch, single sided, double density
diskettes with the PERCOM douber interface. For 49, 77 and 89 track
drives, set TC to 39, 76 and 79 respectively. If LNW interface, use
TI=EK; if that doesn't work, try TI=CK. ‘

6. NOTE!!l 5 inch, double sided, double density diskettes used on
NEWDDOS/8p Version 1 cannot be used on Version 2. The files on these
diskettes must be moved, while using NEWDOS/8f Version 1, to either
double sided, single density or single sided, double density
diskettes, which can be used with Version 2. Once this is done, the
file may be copied to a Version 2 double sided, double density
diskette.

8. 5 inch double density diskettes are supported in Version 2 for the
PERCOM and LNW double density modifications.

9. SYSTEM has been greatly expanded. Study section 2.46 carefully.

1. Options AH and AK are dropped. Options AT through BN, except BL,
have been added.

2. Option BN decides whether NEWDOS/8¢ is to write single density
directory sectors to be readable by Model I TRSDOS or readable by
Model III NEWDOS/8f. One or the other is allowed but not both.

3. Option BJ allows NEWDOS/8@ disk delay timing loops to be increas-
ed so that CPU speed up modifications can be active during disk I/0.
NEWDOS/ 8¢ can handle most CPU speed ups, but it cannot tolerate any
slowdown of the CPU below the standard 1.772 megahertz speed.

12-3 CONVERSION & COMMENTS

1. COPY has been considerably changed. Study carefully section 2.14.

1. CBF will work even though the system diskette must be dismounted
or if all three diskettes will use the same drive.

2. If you are using CBF (format 6) to copy the NEWDOS/8p Version 2
system to another diskette, then you MUST specify the FMT option. If
you don't, the BOOT/SYS and DIR/SYS information may be wrong. If you
are simply copying one or more of the system files to an existing
system diskette (existing in the sense that it can already boot
properly on the drive it is supposed to boot on) then you do not need
to specify FMT. This information was not included in the CBF
documentation and should have been.

3. COPY allows files to be copied back and forth between a NEWDOS/8¢
Version 2 diskette and a Model III TRSDOS Version 1.3 or higher
diskette provxded the proper PDRIVE setting is used (see PDRIVE TI
flag M).

11. The DOS system ID formerly at location 4@3EH is now shifted to 4427H.
In Version 1, 4@3EH contained either 89 (5¢H) or 128 (8¢H). In Version
2, location 4427H contains 139 (82H) identifying NEWDOS/8f Version 2, and

location 442BH contains @1 if Model I and $#3 if Model III.

12. None of the NEWDOS/8¢ Version 1 modules, including all the system
modules, the BASIC modules and all other programs supplied on the master
diskette, can be used with NEWDOS/8f Version 2. Therefore, the user files
on Version 1 system diskettes must be copied to Version 2 system diskettes
without copying any of the old Version 1 modules. For single drive users,
this is a monumental task, but even multi-drive users must convert more
than one system diskette. For each such system diskette, you may use the
following procedure to copy your files.

1. Using a copy of the zap updated NEWDOS/8@ master system diskette
as both the system and source diskette, make another copy of that
diskette using format 5 or format 6 COPY with the FMT option
specified.

2. Kill off NEWDOS/8P Version 2 files that you do not want to keep.
You could have effectively done this by using the ILF parameter in
the above COPY, if that-copy was format 6. Your ILF file can be
built starting with the NWD82V2/ILF file provided on your NEWDOS/ 8P
Version 2 master diskette and, using CHAINBLD/BAS or SCRIPSIT to
delete lines for unwanted files. Remember to save the resulting file
under a different name, which you will refer to in the ILF parameter
of the COPY.

3. Using the resulting diskette again as the destination diskette
and the old Version 1 diskette as the source diskette, perform a
format 6 copy with the NFMT and the XLF=NWD82V2/XLF:§ parameters.
This will copy all of your files from the Version 1 to the Version 2
diskette but will not copy any of the NEWDOS/8p Version 1 files,
since they were all excluded by the XLF file. The file NWD82V2/XLF
was included on the NEWDOS/8@ Version 2 diskette exactly for this
purpose and can be inspected via SCRIPSIT or CHAINBLD/BAS.

CONVERSION & COMMENTS 12-4

4. 1f you wish to copy the resulting Version 2 svstem disihette that

now has your files as well back onto the ¢ld Version | diskette, Yyou
. chould do so using a format 5 oT format 6 copy with the T option

specified. This gets the Version 2 system and your files back onto

the diskette with the old label.

12.3. Converting from Versiom 1 on the Model I to Version 2 on the Model II1I.

1. Most of section 12.2 applies here; read that section before reading
this one. This section will deal only with Model III specifics.

2. Most user programs that were zapped to work with NEWDOS/ 89 Version 1
will work on the Model III NEWDOS/ 8¢ Version 2 with the following correc-—
tions: -

1. All references to any bytes in the location range 43ppH - 43FFH
must be dropped or changed to different appropriate locations. This
area is now the system sector buffer instead of the 42¢0pH — 42FFH
area used by Version l.

2. The use of 4315H to toggle DEBUG must be dropped altogether.

3. The byte at 4312H used to enable/disable the BREAK key has been
shif- ted to 4478H. The toggling of bit 4 of location 4369H must be
. dropped altogether.

4. The location of HIMEM has been shifted from 4P49H — LP4LAH to
44110 - 4412H.

5. The location of the CLOCK has been shifted from 4p4l - 4P43H to
42174 - 4219H. ’

-6; The.location of fhé DATE has been shifted from 4Q44H ~ 4p46H to
421AH - 421CH.

7. The 25ms one byte cyclic counter has been shifted from 4949H to
L41FH. The user timer interrupt routines still cycle based on 25ms

increments even though the interrupts really occur every 1/39th or
1/125th of a second.

8. The 441PH vector used to insert a timer interrupt routine into
NEWDOS/8¢'s queue has been changed to 447BH (see section 3.8).

9. The DOS command buffer has been changed from starting at 4318H to
start at 4225H.

3. The Model III NEWDOS/8p Version 2 diskette directories are in Model I
NEWDOS/ 8¢ Version 2 format and are NOT compatible with Model 111 TRSDOS

. diskettes.

12-5 CONVERSION & COMMENTS

4., The Model I1I NEWDOS/89 Version 2 FCB format is the same as for the
Model 1 NEWDOS/8p Version 2 and is NOT compatible with the Model III
TRSDOS FCB format.

5. The following PDRIVE specifications must be used to read and write
existing Version 1l diskettes on Model III Version 2. These specifications
must be used when making a diskette that will be read on Version 1.

1. PDRIVE,dnl,dn2,TI=AK,TD=E,TC=39,SPT=18,TSR=3,GPL=2,DDSL=17,DDGA=2
is the specification for 5 inch, single sided, double density, 4@
track diskettes. For 35, 77 or 8p tracks, set TC to 34, 76 and 79
respectively. :

2. PDRIVE,dnl,an,TI=A,TD=A,TC=8¢,SPT=1¢,TSR=3,GPL=2,DDSL=17,DDGA=2
i1s the specification of a 5 inch, single sided, single density
diskette. For 35, 4§ or 77 track drives, set TC accordingly.

3. PDRIVE,dnl,an,TI=A,TD=C,TC=8¢,SPT=2¢,TSR=3,GPL=4,DDSL=17,DDGA=2
is the specification of a 5 inch, double sided, single density, 8¢
track diskette. For 35, 4§ and 77 track drives, set TC accordingly

4. NOTE!!l 5 inch, double sided, double density diskettes used on
NEWDOS/89 Version 1 cannot be used directly on the Model III. See
section 12.2.7.6.

. 12.4. NEWDOS/8) Version 2 incompatibilities with Model I TRSDOS Version 2.3.

1. NEWDOS/8f maintains the NEXT field of the FCB in RBA format at all
times. TRSDOS 2.3 maintains the NEXT field as an RBA whenever the lower
order byte equals § or whenever the current write position is within a
buffer that has been changed but not yet updated. In most other cases, _
TRSDOS tends to maintain the NEXT field equal to the RBA plus 256. At any
one time, there is some confusion just what the NEXT field really means.

2. NEWDOS/8f maintains the EOF field of the FCB in RBA format at all

 times, and it updates the FCB EOF field for each byte written to the file,

if indeed the EOF is to be changed. TRSDOS 2.3 updates the EOF only when
the sector is actually written, though the low order byte is updated
continuously during single byte or logical record writes. Thus if the
current record would cause a change in EOF, EOF has two possible values,
depending upon whether the current sector has pending data awaiting write
or the current sector has already be written. Nermally TRSDOS's FCB EOF
value is an RBA value if the low order byte equals § and RBA plus 256 if
the low order byte is non-zero.

3. Enabling or disabling of DEBUG in TRSDOS is still done by setting the

byte at 4315H which .is ignored in Model I NEWDOS/8@ and must not be done
in Model III NEWDOS/84.

4. Activation and deactivation of timer routines is done differently in
the two systems (see sections 3.8 and 3.9 for the NEWDOS/8f methods).

5. Both Model I TRSDOS and NEWDOS/8§ use essentially the same directory

CORVIRSION & COMMENT 12-&

format excopt tihat TRSDOS 1s still limit
granule directory and that NEWDOS/8¢ use
bits.

ed to 2% track ciskettes and ¢ two
s sowc previously unused bytes and

6. The following is & list of routines defined in chapter 3 that ate
common to both NEWD0S/8§ Version 2 and Model I TRSDOS 2.3. Each routine
performs nearly the same in both systems. The other chapter 3 routines
are either not used in Model I TRSDOS or are defined for different
functions. These common routines are:

gPp13H, PPLBH, 4@2DH, 4P3QK, &44PPH, 4405H, 44P9H, 44PDH, 441CH, 4428h,
4424H, 4428H, 442CH, 443PH, 4433H, 4436H, 4439H, 443CH, 443FH, 4442H,
| 4445H, 4448H, 446TH, L46AH, 446DH, 447QH, 4473H

12.5. NEWDOS/8J Version 2 incompatibilites with Model III TRSDOS Versiom 1.3.

1. Model III TRSDOS diskettes are totally incompatible with NEWDOS/ 8§
Version 2 diskettes. 5 inch, single density, single sided, 35 track
diskettes with a two granule directory starting on lump 17 can be proces-
sed with Model III TRSDOS's convert program. Also, files can be copied
back and forth between NEWDOS/8) Version 2 diskettes and Model III TRSDOS
Version 1.3 or higher diskettes providing the PDRIVE specifications for
the Model III TRSDOS diskette include the TI flag M.

2. Model III TRSDOS Version 1.3 has gone to using RBA values in the NEXT
and EOF fields of the FCB and the EOF field of the directory. With this
change to the FCB processing, NEWDOS/8p and TRSDOS has become more com-—
patible than prev1ously though, at this printing, just how close is not
yet clear. .

3. Model III TRSDOS uses a 5§ byte FCB whereas NEWDOS/8p Version 2 stays
with the old 32 byte format. NEWDOS/8@ can use the 5§ byte FCB area, but
TRSDOS will clobber the 18 bytes following a 32 byte FCB. Users should
study the specifications of the FCB's between the two systems as the dif-
ferences are not detailed here.

4, The byte used to enable or disable the BREAK key is at 42AEH for Model

111 TRSDOS whereas it is as 4478H for Model III NEWDOS/8@ and 4312H for

Model I NEWDOS/8p. If the byte equals $CI9H the BREAK key is enabled, and
" if the byte equals PC3H the BREAK key is disabled.

5. The following is a list of the routines defined in chapter 3 that are
common to both NEWDOS/8@ Version 2 and Model III TRSDOS. Each routine
performs nearly the same in both systems. The other chapter 3 routines
are either not used in Model III TRSDOS or are defined for different fun-
ctions. These common routines are:

p9p13H, @P1BH, 4@2DH, 4@3QH, 44POH, 44PDH, 441CH, 442PH, 4424H, 4428H,
442CH, 443PH, 4433H, 4436H, 4439H, 443FH, 4442H, 4445H, 4448H.

6. Refer to section 7.13 for comparison of the BASIC CMD functions

12-7 CONVERSION & COMMENTS

offered in NEWDOS/8f with those offered for Model I1I TRSDOS.

. 7. _ Routing is handled somewhat differently in the two systems. Straight
forward applications should be all right. DUAL is not implemented in
NEWDOS/8f. ‘

12.6. Miscellaneous Co-mekts.

1. A very few users have coded system routines to be loaded by DOS' sys-
tem routine loader, and these users should be aware that NEWDOS/ 80 Version
2 uses the system FPDE slots through SYS21/SYS. Whereas NEWDOS/21 and
TRSDOS were limited to 14 system programs loadable by the system program
loader NEWDOS/8p allows for 3§ with FDE slot assignment continuing the
same order established by the old TRSDOS. The code to activate a routine
in one of these directory position dependent system modules is sent to the
system in register A, must be greater than 1FH and in uuubbsss 8 bit for-

mat where:
" sss+2 = the relaiive sector in the directory containing the FDE.
" bb‘times 32 (2ﬂﬂj = the offset in the sector to the FDE.
wuu = a user defiﬁed code greater than §.

‘ A future release of NEWDOS will use system programs from SYS22/SYS
and up; users should start from SYS29/SYS down.

2. All NEWDOS8§ support programs use HIMEM high memory value in Model I
locations 4P49H-4P4AH (Model III locations 4411H-4412H) as upper memory

limit. :

3. (Model I only) During power on, reset or a jump to location §,
control is passed to the ROM. To determine if the disk controller is
present, the ROM tests the contents of location 37ECH, the disk controller
status byte. If the value is either f#f or FFH, ROM assumes a non-disk
system and proceeds to initialze non-disk level II BASIC. However, §f is
a valid disk controller state, meaning that the controller has no status
and the drives are ready (the light is on). To avoid this unwanted entry
into non-disk BASIC, wait until the ready light goes off before pressing
reset.

4, To speed up disk operations when additional file space is allocated
to a file, NEWDOS/89 allocates up to 4 granules at one time. There is a
disadvantage to this, however. If two or more new files on the same
diskette are open at the same time, it is quite possible to rumn out of

. file space, close all the files and then find out the diskette now has
space, as CLOSE released the extra granules that files had allocated but
not yet used.

CONVERSION & ConnonTe 12-8

5. NEWD0OS/8f currently does not have any checl ¢n mawimun trock number
when it moves the diskette zrm. JI the track number c¢xceeds the physical
1imits of the drive, the drive arm will bang against the stops for as many
times as the track number exceeds the physical number of tracks for the
drive. Since DOS retries 1/0 a number of times, 1t can be as long as omne
minute before the I/0 is declared in error. To cut this interval short
when this banging occurs, simply open the drive door and wait till either
the drives stop rotating or the error is declared. Then close the drive
door.

6. The BASIC single stepping (CMD"F=SS") function does not allow time
dependent functions such as an INKEY$ loop to work. In the case of
INKEY$, if the user inputs a non-null key to INKEYS$ along with the ENTER
that steps BASIC, the INKEYS key is ignored since it is seen before the
ENTER. Also, the single stepping display does not work in 32 character
display mode.

7. TFORMAT correction. Parameter PFST is mutually exclusive with Y and
with N.

8. COPY correction. If format 6 COPY (CBF) is used to copy the NEWDOS/ 89
system to a new system diskette, the parameter FMT must be specified in
order that system files be allocated the required directory FPDEs, be
assigned disk space 1n the required position relative to the directory,
have the proper information placed into file BOOT/SYS. This type of COFY
must be used whenever a system diskette is created whose PDRIVE speci-
fication is different from that of the source diskette.

12-9 CONVERSION & COMMENTS

{

13. HEWDOS/ 80, Version 2, Hodel I11 ZAPS ¢8/10/81.

CAREFULLY STUDY chapter 11 of NEWDOS/80 documentation for instructions on how
to apply zaps.

Some modules have multiple versions with the zaps different in each version.
Use the verify to determine which version you have and apply the appropriate
zap(s). If you have a version different from any listed (i.e., the verify(s)
do not match, contact the program's distributor or Apparat). Apparat is trying
to get the program creator/maintainer/distributor to create and distribute the
necessary zaps to run with NEWDOS/80, Versiom 2, but where this does not occur
and for widely used programs, Apparat will generate any necessary zaps. ILf
Apparat decides to generate the zaps and does not have your particular version,
you will be asked to send the version you have on a diskette to Apparat (as a
gift to Apparat, see chapter 11) so that Apparat may determine the appropriate
zaps; Apparat will not seek out your version from another source, and will not
create a zap from a paper listing.

*kkkkkkk ZAP 001 F¥kikkkxk (8/10/81 *kx¥k¥ik YIMI Fkkkkdkk

Mandatory zap to Model III TRSDOS 1.2 Version of SCRIPSIT to run under
NEWDOS/80 Version 2. This zap module will not rum on other D0Ss. If you are
running NEWDOS and files appear to load short one sector, be sure these zaps
are in. The first two zaps allow for the difference between NEWDOS/80 and the
older TRSDOSs in the FCB NEXT and EOF fields. The next 2 zaps move the stack

area down so MINI-DOS can be used.

SCRIPSIT/CMD,11,3E change 01 05 4F to 01 00 &4F
SCRIPSIT/CMD,11,C9 change

B7 C4 D8 5D 79 32 FC 7B 11 to B7 32 FC 7B C4 D8 5D 00 11
SCRIPSIT/CMD,00,1E change 31 FF 41 to 31 EO 41
SCRIPSIT/CMD,00,B2 same as above

SCRIPSIT/CMD,04,11 ~ change 31 FD 41 to 31 DE 41
Perform the same for locations 06,C0 12,35 17,33 18,E1 27,ED and 30,0D

kkdkkkkk ZAP 003 *xkEkwkkk (8/10/81 FkExkkkkk YIM3 *FEFIkkkk

Mandatory zap to the old Model I versions of SCRIPSIT/UC and SCRIPSIT/LC to rum
under NEWDOS/80 Version 2 on the Model III. This zapped module will not rum on
other DOSs. The first 3 changes are necessary because of the different way the
FCB's NEXT and EOF fields are maintained. If you are running NEWDOS and files

appear to load short one sector, check to make sure these zaps are in. The 4th
zap causes DOS' HIMEM address value in 4411H - 4412H to be used as SCRIPSIT's

high memory. The 5th zap re-emables the interrupts so MINI-DOS can be invoked
from SCRIPSIT. The 6th through 9th zaps cause parallel printer output to go to
port OF8H. The 10th zap allows for the Model III treating each shift key as an

13-1 ZAPS (PATCHES)

“individual code. The 11th through 13th zaps change the stack pPtr to allow for
MINI-DOS.

SCRIPSIT/UC,11,75 and SCRIPSIT/LC,11,75
change 47 00 CD 6E 7A 4F to 47 00 3A B9 7C 4F

SCRIPSIT/UC,11,FB and SCRIPSIT/LC,11,FB
change B7 C4 EF 5D 79 to B7 32 B6 7C C4

SCRIPSIT/UC,12,00 and SCRIPSIT/LC,12,00
change 32 B9 7C 11 to EF 5D 00 11

SCRIPSIT/UC,00,63 and SCRIPSIT/LC,00,63 change
7C 21 FF 00 25 7E 2F 77 AE 20 F9 22 to
7C 2A 11 44 00 00 00 00 00 00 00 22

SCRIPSIT/UC,00,C3 and SCRIPSIT/LC,00,C3
change 57 F3 ED to 57 00 ED

SCRIPSIT/UC,00,47 and SCRIPSIT/LC,00,47 change
0A 32 E8 37 AF to 0A D3 F8 00 AF

SCRIPSIT/UC,20,Bl and SCRIPSIT/LC,20,Bl1 change
0D 32 E8 37 32 and 0D D3 F8 00 32

SCRIPSIT/UC,21,79 and SCRIPSIT/LC,21 79 change
0D 32 E8 37 D3 to 0D D3 F8 00 D3

SCRIPSIT/UC,41,3A and SCRIPSIT/LC,41,34A change
20 32 E8 37 08 C3 74 5F 32 E8 37 C3 to
20 D3 F8 00 08 C3 74 5F D3 F8 00 C3

SCRIPSIT/UC,15,43 and SCRIPSIT/LC,15,43 change
10 CB 08 30 34 FD 34 4E FD 35 4E 20 2C C6 20 18 28 D6 to
10 57 78 E6 03 28 33 FD 7E 4E B7 20 2D CB EA 18 29 D6

SCRIPSIT/UC,00,43 and SCRIPSIT/LC,00,43 change
31 FC 41 to 31 EO 41

SCRIPSIT/UC,00,D3 ana SCRIPSIT/LC,00,D3 change
31 FC 41 to 31 EO 41

SCRIPSIT/UC,04,32 and SCRIPSIT/LC,04,32 change
31 FA 41 to 31 DE 41
(perform the same for the following six locatioms: 07,00 12,63 17,52

28,CD 30,ED and 40,ES

TXREREAKR ZAP Q3 FdrEkhkdhxw 08/10/81 ##vckkshnx V2ZM3 Fddedodesedese

Optional zap to EDTASM/CMD to disable the lower case to upper case conversion
done by EDTASM's keyboard input routine. Most functions within EDTASM will
still require upper case, but comments and operands enclosed in single quotes
(for DEFM and DEFB) will accept lower case.

ZAPS (PATCHES) 13-2

EDTASM/CMD,28,DD change FE 61 D3 to FE 80 D8

Fhkkkkkic ZAP Q04 Fxdkkhkkkk 8/ 10/8]1 #rkaxkrx YIMI kikkdkdkdkxsx

This is information rather than an actual zap.

1. Where possible, the NEWDOS/80 modules have reserved zap areas. Apparat
purposely did not mention them in its documentation as it did not want to draw
attention to them. Users are hereby warned that Apparat will preempt these
areas without preliminary notice and in its zap verifies will expect these
areas to contain zeroes. Users who apply non-Apparat zaps into these areas
should carefully maintain logs of what they have done to compare against future

NEWDOS/80 zaps for area conflicts.

2. The DOS command ATTRIB (see section 2.3) has an additional optional param-
eter, LRL=xxx, not specified in that section. LRL=xxx specifies the new logi-
cal record length of records in the file where xxx is an integer between 1 and
256. This record length is used now only by DIR, but if user processing

assumes a file has a given record length, some users may want the DIR display

to reflect it.

3. MINI-DOS (see section 4.2) is illegal under DOS-CALL (see section 4.4). If
the DFG keys are depressed while DOS is under DOS-CALL, the triple key depres-

sion will be ignored.

4. DOS command ROUTE (see section 2.43) has been altered such that existing
routes are displayed only if the ROUTE command has no parameters.

5. DOS command COPY (see section 2.14), format 6 (CBF) has a new optional
parameter DFO (Destination Files Only). If DFO is specified, then file con-
tents are copied if and only if the file previously existed on both the desti-
nation and source diskettes. DFO is mutually exclusive with FMT.

6. DOS command FORMAT (see section 2.22) has a new optional parameter RWF (RaW
Format). If RWF is specified, all errors are ignored and each track is for-
matted once, whether or not the format actually takes. RWF is used when the
user wishes to obliterate the information on a damaged diskette and doesn't
have a magnet. RWF is mutually exclusive with KDN, KDD, DDSL, DDGA and PFST.

7. NEWDOS/80 Version 2 does not have the equivalent of Model III TRSDOS's
SRAMDIR or SFILPTR functions.

*kkrxkkE ZAP 005 FhEkkkkdkk 0810781 Fhkkkkkkdk YIM3I dkdkwkkik

Mandatory zap to allow the TRSDOS 1.2 Model III VISICALC to operate with Model
III NEWDOS/80 Version 2. The first zap sets the proper BREAK key enable
address. The 2nd zap disables VISICALC's directory search feature.

The directory search capability of VISICALC is disabled as NEWDOS/80 does not
have the RAMDIR facility that Model III TRSDOS does. However, it is possible
to use MINI-DOS to search the directory by (1) typing in the /SL command, (2)

13-3 ZAPS (PATCHES)

pressing DFG to enter MINI-DOS, (3) perform the MINI-DOS functions, (4) clear
the display, (5) exit from MINI-DOS, (6) back in VISICALC, press three or more
CLEARs to clear the command state, (7) execution one of the /T commands to
restore the VISICALC display.

VC/CMD,00,F7 change 52 AE 42 36 to 52 78 44 36

VC/CMD,72,0D change E5 CD 90 42 FD to ES5 3E 08 B7 FD

FHEREINX ZAP 006 *rddkdkkx 8/ 10/ 81 FEwdkwwkk YIMF wEwwkkksk

Mandatory zap to allow the old Model I VISICALC to operate with Model III
NEWDOS/80. The resulting zapped module will not run with TRSDOS or NEWDOS21;
so maintain 2 different versions. The first 3 zaps deal with the different
handling by NEWDOS/80 of the user 25ms interrupt routines (see sections 3.8 and
3.9). The 4th zap adjusts for NEWDOS/80's difference from TRSDOS on a returned
error code causing VISICALC's directory search to hang if any of the 4 drives
are not present or have no diskette mounted. The Sth and 6th zaps adjust for
the different HIMEM location in the Model III. The 7th zap disables the 4315H

disable of DEBUG (not used on Model III).

VC/CMD,03,2B change

09 3E 00 21 20 03 22 51 9F C9 79 to 09 18 BB 00 00 08 08 C3 EF 9B 79
VC/CMD,75,15 change 11 28 9C 22 to 11 1E 55 22

vCc/CcMD, 75,21 change

CD 10 44 C9 3E 03 C3 13 44 CD 4E 53 F5 CD 16 9C 28 QE 3E to
CD 7B 44 C9 11 1E 55 C3 13 44 CD 4E 53 CD 16 9C C8 00 3E

vC/CMD,73,01 change C9 FE 18 20 to €9 37 C9 20
VC/CMD,00,18 change 24 49 40 7D to 2A 11 44 7D
VC/CMD,00,DC change 24 49 40 11 to 2A 11 44 11
VC/CMD,00,F2 change 00 77 01 to 00 00 Ol

Frgkkkkk ZAP 007 ¥*kkkkwdk (08/10/8] #Ekkkdkk YIM3 dkdwwdkw

Optional zap to increase or decrease the sensitivity of double density diskette
formatting. One of three byte patterns can be chosen, depending on the relia-
bility of your interface, drive and diskettes. The more semnsitive the byte
pattern, the greater the probability a marginal diskette will fail format and
the lesser the probability that having formatted successfully, the diskette
will fail later (under normal careful handling). The less sensitive the byte
pattern, the lesser the probability a marginal diskette will fail format and
the greater the probability that having formatted successfully, the diskette
will fail later. The byte patterns are:

1. E5 E5 = least sensitive during formatting. This was and is the
single density standard patter

ZAPS (PATCHES) 13-4

o

2. 5B 58 = interrediate sensitivit: during formatting. This 1s the
TRSDOS Model II1 pattern.

3. 6D B6 = most sensitive during formatting. This pattern strains the
disk formatting and if the interface, drives and diskettes are mot 1in
first class condition, 30% or more of the diskettes will fail formatting.

Depending upon the frequency of format failures to diskette failures at other
times, the user chooses which of the three 2 byte patterns to use and inserts
them in the following locations, first checking that one of the three patterns
is already at those locatioms. Each location receives both bytes, and as a
check on each location, the preceding byte is F5.

SYs6/sYs,31,E3

SYS6/SYS,31,FD

sxkkkiikk ZAP 008 *¥Fkkkkk (8/10/81 *¥¥wkkkk VIM3 Fkickdkkk

Optional zap to allow the COPY function to use Model III diskettes in the
TRSDOS 1.2 or earlier directory format instead of the TRSDOS 1.3 format the
COPY command is prepared to handle. The zap must be backed off when the user
wants to re—enable COPY to handle TRSDOS 1.3 format Model IIT diskettes.

SYS6/SYS,14,75 change 01 00 7B to 01 01 7B
SYS6/SYS,14,C8 change 01 00 1D 4E 01 13 00 to 01 13 1D 4E 01 00 00
SYS6/SYS,20,EA change 61 C8 5E to 61 C9 5E

13-5 ZAPS (PATCHES)

ACC

alpha

slphanumeric

APPEND

ASC

ASE

ASPOOL
activation
initial setup

Asychronous Execution

ATTRIB

AUTO

-3B -
BASIC MODULES
BASIC2

BAUD

BDU

bit

BLINK

BOOT
BOOT/SYS
BREAK

buffer

byte

CBF

CHAIN
CHAINBLD
chaining - .
CHAINTST -
character
CHNON
CFWO. .
CLEAR
CLOAD
CLOCK
CLOSE

CLS

CMD

W

REAK

BN <l - e

- DELETE
ERASE

~ KEEP

POEN

2-4
10-1
10-1

2-2
2-4,2-19
2-4,2-19
5-3,6-19

6-21
6-19
2-4
2-3

2-5

5-2

2-5

2-44
2-13
10-1

2-5
2-6,10-1
5-1,10-1
2-6,12-2
10-1
10-1

2-14
2-6,4-7
5-3,6-16
10-1

. 5=3
10-1

2-7

2-14

2-8

. 7-1
2-9,3-11

3-7,10-2,A-9

2-9

~ NS
R
s 00 00 00

MW
|
W wwoWw o

7

INDEX-1

NI cont'd
POPR 7—12
POPS 7—12
SASZ 7—12
SS 7-14,12-9
SWAP 7—13
I 7—10
J 7—10
L 7—10
0 7-10,7—14
P 7—10
R 7—10
S 7—10
T 7—10
X 7—10
Z 7—10
doscmd - 7—11
COPY 2-9,12-4,1 2-9
CREATE z—18
CcVD 8—20
CcvVi 8—-20
cvs 8—20
. - D -
DATE 2-19,3-11
DDGA 2-15
DDND 2—12
DDSL 2-—15
DEBUG - 123 2-20,4-1,3-3,1 2-2
DEC 10-2
DFG — MINI-DOS 46
DFO 11-8
DI 7-4
DIR - 2-20
DIRCHECK 5-3,6—12
directory 12-2,10-2
Directory Structure 5-4
DIR/SYS 5-1,310-2
DISASSEM 5-3 ,6~5
DISK BASIC 7-1 , 8-1
activating 7-2
command truncation 7-&4
direct commands 7-3
enhancements 7-1
I/0 enhancements 8-1
file types _ g8-1
module overlays 7-1
DO 2-22 S 4~7
DOS 10-2
DOS-CALL 4-12,3-4,10-2
DOS command (doscmd) 10-2
DOS ROUTINES 3-1-
DOS SYSTEM MODULES 5-1

DPDN
DU
DUMP

EDTASM

EDIT direct commands
|/ or shift up-—arxow
s or shif; down~arrow

3

3

@

up—-arrow
down—-arrow

EQF -~
EOL
EOM
EQR
EQS
ERROR

error messages

DOS
BASIC

extent element
: - F -

fan
FCB
FDE

E -

2-10
7-4
2-22

5-3,6-14
7-1,7-3
7-3

7-3

7-3

7-3

7-3

7-3

7-3

7-3

10-3
10-3
10-3
10-3
10-3
2-24,3~2
9-1,7-1
9-1,7-1
9-2,7-2
10-3

10-3

5-9,3-9,3-10,10-3

5-6,10-3

FF FILE 8-10,10-3;A-39,B-5,B-6,B-7

FI FILE

FIELD ITEM FILE

file

file item
filearea
filespec

FILE TYPE (£ft)

FI
FF
MI
MF
MU

FILE POSITIONING (£fp)
FIXED ITEM FILE

FMT-
FORMAT
FORMS
FPDE
FREE
FXDE

GAT sector
GET

-G -

8-10,10-4,A-45,B-15

10-4
10-4
10-4
10-4
10-4
8-10
8-10,A-45
8-10,A-39

- 8~10,A-35

8-10,A-30
8-10,A-20

8-3,10-5,A-1

8-7,10-4
2-12

2-24,12-9,10-4

2-26
5-7,10-5
2-27
5-9,10-5

5-5,12-2,10-5

8-12,A-10

INDEX~

granule 10-5-
- H -
hash code 10-5
hexadecimal 10-5
HIMEM 2-27,12-8, 10-6
HIT sector 5-6, 10~6
-1 -
1/0 error recovery 8-19
1/0 link or path 10-6
ILF 2-14
IGEL 84, 10-6
IGEL expression 8-5, 10-6
IGELSN 10-6
item group 10-7
-J -
JXL 2-27 4 4-13
- K -
KDD 2-13
KDN 2-13
KILL 2-28
-1 -
LC 2-29
LCDVR 2-29
len 10-7
LIB 2-30
LINES 2~-26
LIST 2-30
IMOFFSET 5-3 ,6-9
LOAD 2-31,3-7,7-4
V option 7-4
LocC 8-18 ,A-18
LOCK 2-3 ,2-40
LOF A-17
logical record 10-7
Lower Case Suppression 7-8
LRECL 10-7
LRL 2-18
LSET 8-20
LUMP 12-2 ,10-7
-— M -
MARKED ITEM FILE 8-7 ,10-7
MDBORT 2-31
MDCOPY 2-32
MDRET 2-32
MERGE 7-5
MF FILE 8-10,10-7,A~30,8-12 ,B-14
MI FILE 8-10,10-7 , A-35,

B-14,B~-15 ,B-17

MINI-DOS - DFG

4-5

MKDS 8-20
MKIS$ 8§~-20
MKSS$S 8-20
ms 10-7
U FILE 8-10,10-7,A-20,B-2,"
-B-3,B8-4,B-9,8-10,B~11
- N -
null 10-7
null character 10-8
null string 10-8
NDNW 2-12
NDN 2-13
NDPW 2-12
NEMT 2-12
NOWAIT 2-44
-0 - .
ODN 2-12
ODPW 2-14
OPEN 8-9,3-5,3-6,9,10-8,A-6
- P -
PARITY 2-44
partial record I/O 10-8
PAUSE 2-33
PDRIVE 2-33,12-2
A - 2=37
DDGA 2-37
DDSL 2-37
GPL 2-37
SPT 2-37
TC 2-36
D 2-36
T1 2-34
TSR 2-37
PFST 2-25
PFTIC 2-25
PRINT 2-39
print/input file 10-8
PROT 2-3,2-40
PSEUDO FIELD 8-17
PURGE 2-41
PUT 8-14,A~13
- R -
R . - 2-41
RBA 12-1,10-8
REC 2-18
REF 7-7
REGISTRATION 1-1
REMBA 8-16,10-8
REMRA 8-16,10-8

INDEX-3

RENAME 2—42
RENEW 7-—17
RENUM 7 -5
Reporting errors 11-1,11 -2
reset/power—-on 160-8
ROUTE 2-42,12-8
RSET 820
RUN 7 -4
V option 7 -4
RUN-ONLY 7-2,7# -8
RUF 2—40
- 8 -

sector 10-9
SETCOM 2—44
SN 2—13
SOR 10-9
SPDN 2—10
SPW 2—12
STMT 245
SUPERZAP 5~3,6-1
display mode - 6H-3
function mode s-1
modify mode &4
SCOPY &3
SYSTEM 2-45,1 2-3
AA 2—46
AB 2—46
AC 2—46
AD 2—46
AE 2—46
AF 2—46
AG 2—46
AH 2—46
Al 247
AJ 2 —47
AK 2 —47
AL 2 —~47
AM 2 =47
AN 2 —47
AO Z —47

. AP Z—47
AQ Z-47
AR Z-47
AS Z-48
AT Z 48
AU Z-48
AV 2-48
AW 2-48
AX 2-48
AY 248
AZ 248
BA 248

SYSTEM cont'd

BB 2-48
BC 2-49
BD - 2-49
. BE’ ©2-49
‘BF . 2-49
BG 2-49
. BH 2-49
B1 2-49
- BJ . 2-49
BK 2-49
BM 2-49
BN 2-49
SYSTEM Files Required 5-1.
SYSTEM reduced size 5-4
STOP 2-44
-7~)
track 10-9
TIME 2-50
timer interrupts '’ 3-3,3-4
-0 -
UBB 2-13
UDF 2-4
UNLOCK - 2-40
UuPD 2-4,2~14
UPDATE SERVICE 11-6
USD 2-13
USR 2-14,2-41
user segmented file 10-9
. =V -
VERIFY 2-51
vice 2-44
WI1DTH 2-26
whole record I/0 10-9
WORD 2-44
WRDIRP 2-52
- X - .
XLF 2-14
-7 -
ZAP 10-9
ZAPS
Distribution 11-5
~Duplication 11-7
Format 11-2
Installation 1-4,11-5,11-6
Procedure 11-4
Update Service 11-6

INDEL-4

-~ SYMBOLS -
[ext
*name routine
123 - DEBUG
/ or shift up—arrow
; or shift down—arrow

’

@

up-arrow
down—arrow

2-14,2-41
3-10,3-11
2-19,4-1

7-3

7-3

7-3

7-3

7-3

7-3

7-3

-ERBATA SHEET

The followiqgﬁcorggctions are needed in the NEWDOS/80 Version 2.0 manual.

Page

Page

‘Page

Page

Page

2-7:)
eximple 2 of CHAINING change DO YYY/CHN:1 to read DO YYY/CHN:1,QQQ

2-28: .
sub-section 7.27. KILL should read 2.27. KXILL

2-29: .
subfggq;ipn 7.28 LC should read 2.28. ’LC

7-8: : A
in the last paragraph of sub-section 7.12. the word MEMU should read
MENU) ' '

8-19:
in the last sentence of the page the word recors's should read
record’'s ' ’ ' ’ '

	rest.pdf
	1301.pdf
	1302.pdf
	1303.pdf
	1304.pdf
	1305.pdf
	i01.pdf
	i02.pdf
	i03.pdf
	i04.pdf
	i05.pdf

